147 research outputs found

    Cloning and Characterization of a Putative TAC1 Ortholog Associated with Leaf Angle in Maize (Zea mays L.)

    Get PDF
    BACKGROUND: Modifying plant architecture to increase photosynthesis efficiency and reduce shade avoidance response is very important for further yield improvement when crops are grown in high density. Identification of alleles controlling leaf angle in maize is needed to provide insight into molecular mechanism of leaf development and achieving ideal plant architecture to improve grain yield. METHODOLOGY/PRINCIPAL FINDINGS: The gene cloning was done by using comparative genomics, and then performing real-time polymerase chain reaction (RT-PCR) analysis to assay gene expression. The gene function was validated by sequence dissimilarity analysis and QTL mapping using a functional cleaved amplified polymorphism (CAP). CONCLUSIONS: The leaf angle is controlled by a major quantitative trait locus, ZmTAC1 (Zea mays L. Leaf Angle Control 1). ZmTAC1 has 4 exons encoding a protein with 263 amino acids, and its domains are the same as those of the rice OsTAC1 protein. ZmTAC1 was found to be located in the region of qLA2 by using the CAP marker and the F(2:3) families from the cross between Yu82 and Shen137. Real-time PCR analysis revealed ZmTAC1 expression was the highest in the leaf-sheath pulvinus, less in the leaf and shoot apical meristem, and the lowest in the root. A nucleotide difference in the 5'-untranslated region (UTR) between the compact inbred line Yu82 ("CTCC") and the expanded inbred line Shen137 ("CCCC") influences the expression level of ZmTAC1, further controlling the size of the leaf angle. Sequence verification of the change in the 5'-UTR revealed ZmTAC1 with "CTCC" was present in 13 compact inbred lines and ZmTAC1 with "CCCC" was present in 18 expanded inbred lines, indicating ZmTAC1 had been extensively utilized in breeding with regard to the improvement of the maize plant architecture

    ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major challenges in currently chemotherapeutic theme is lacking effective biomarkers for drug response and sensitivity. Our current study focus on two promising biomarkers, ERCC1 (excision repair cross-complementing group 1) and BRCA1 (breast cancer susceptibility gene 1). To investigate their potential role in serving as biomarkers for drug sensitivity in cancer patients with metastases, we statistically measure the mRNA expression level of ERCC1 and BRCA1 in tumor cells isolated from malignant effusions and correlate them with cisplatin and/or docetaxel chemosensitivity.</p> <p>Methods</p> <p>Real-time quantitative PCR is used to analysis related genes expression in forty-six malignant effusions prospectively collected from non-small cell lung cancer (NSCLC), gastric and gynecology cancer patients. Viable tumor cells obtained from malignant effusions are tested for their sensitivity to cisplatin and docetaxel using ATP-TCA assay.</p> <p>Results</p> <p>ERCC1 expression level is negatively correlated with the sensitivity to cisplatin in NSCLC patients (P = 0.001). In NSCLC and gastric group, BRCA1 expression level is negatively correlated with the sensitivity to cisplatin (NSCLC: P = 0.014; gastric: P = 0.002) while positively correlated with sensitivity to docetaxel (NSCLC: P = 0.008; gastric: P = 0.032). A significant interaction is found between ERCC1 and BRCA1 mRNA expressions on sensitivity to cisplatin (P = 0.010, n = 45).</p> <p>Conclusion</p> <p>Our results demonstrate that ERCC1 and BRCA1 mRNA expression levels are correlated with <it>in vitro </it>chemosensitivity to cisplatin and/or docetaxel in malignant effusions of NSCLC and gastric cancer patients. And combination of ERCC1 and BRCA1 may have a better role on predicting the sensitivity to cisplatin than the single one is considered.</p

    SUMOylation Represses Nanog Expression via Modulating Transcription Factors Oct4 and Sox2

    Get PDF
    Nanog is a pivotal transcription factor in embryonic stem (ES) cells and is essential for maintaining the pluripotency and self-renewal of ES cells. SUMOylation has been proved to regulate several stem cell markers' function, such as Oct4 and Sox2. Nanog is strictly regulated by Oct4/Sox2 heterodimer. However, the direct effects of SUMOylation on Nanog expression remain unclear. In this study, we reported that SUMOylation repressed Nanog expression. Depletion of Sumo1 or its conjugating enzyme Ubc9 increased the expression of Nanog, while high SUMOylation reduced its expression. Interestingly, we found that SUMOylation of Oct4 and Sox2 regulated Nanog in an opposing manner. SUMOylation of Oct4 enhanced Nanog expression, while SUMOylated Sox2 inhibited its expression. Moreover, SUMOylation of Oct4 by Pias2 or Sox2 by Pias3 impaired the interaction between Oct4 and Sox2. Taken together, these results indicate that SUMOylation has a negative effect on Nanog expression and provides new insights into the mechanism of SUMO modification involved in ES cells regulation

    Trends in Notifiable Infectious Diseases in China: Implications for Surveillance and Population Health Policy

    Get PDF
    This study aimed to analyse trends in notifiable infectious diseases in China, in their historical context. Both English and Chinese literature was searched and diseases were categorised according to the type of disease or transmission route. Temporal trends of morbidity and mortality rates were calculated for eight major infectious diseases types. Strong government commitment to public health responses and improvements in quality of life has led to the eradication or containment of a wide range of infectious diseases in China. The overall infectious diseases burden experienced a dramatic drop during 1975–1995, but since then, it reverted and maintained a gradual upward trend to date. Most notifiable diseases are contained at a low endemic level; however, local small-scale outbreaks remain common. Tuberculosis, as a bacterial infection, has re-emerged since the 1990s and has become prevalent in the country. Sexually transmitted infections are in a rapid, exponential growth phase, spreading from core groups to the general population. Together human immunodeficiency virus (HIV), they account for 39% of all death cases due to infectious diseases in China in 2008. Zoonotic infections, such as severe acute respiratory syndrome (SARS), rabies and influenza, pose constant threats to Chinese residents and remain the most deadly disease type among the infected individuals. Therefore, second-generation surveillance of behavioural risks or vectors associated with pathogen transmission should be scaled up. It is necessary to implement public health interventions that target HIV and relevant coinfections, address transmission associated with highly mobile populations, and reduce the risk of cross-species transmission of zoonotic pathogens

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps : Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting similar to 2000 PGCCs in J = 1-0 transitions of CO isotopologues and similar to 1000 PGCCs in 850 mu m continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are similar to 6200 M-circle dot, similar to 12 pc, and similar to 500 M-circle dot pc(-1), respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (beta) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.Peer reviewe

    Plasma mRNA expression levels of BRCA1 and TS as potential predictive biomarkers for chemotherapy in gastric cancer

    Get PDF
    OBJECTIVE: Personalized chemotherapy based on predictive biomarkers can maximize efficacy. However, tumor tissue obtained at the time of initial diagnosis will not reflect genetic alterations observed at the time of disease progression. We have examined whether plasma mRNA levels can be a surrogate for tumor levels in predicting chemosensitivity. METHODS: In 150 gastric cancer patients, mRNA levels of BRCA1 and TS were assessed in plasma and paired tumor tissue. The Mann-Whitney U-test was used to compare mRNA expression levels between tumor samples exhibiting in vitro sensitivity or resistance to docetaxel and pemetrexed. All statistical tests were two-sided. RESULTS: There were significant correlations between plasma and tumor mRNA levels of BRCA1 (rho = 0.696, P < 0.001) and TS (rho = 0.620, P < 0.001). BRCA1 levels in plasma (docetaxel-sensitive: 1.25; docetaxel-resistant: 0.50, P < 0.001) and tumor (docetaxel-sensitive: 8.81; docetaxel-resistant: 4.88, P < 0.001) were positively associated with docetaxel sensitivity. TS levels in plasma (pemetrexed-sensitive: 0.90; pemetrexed-resistant: 1.82, P < 0.001) and tumor (pemetrexed-sensitive: 6.56; pemetrexed-resistant: 16.69, P < 0.001) were negatively associated with pemetrexed sensitivity. CONCLUSIONS: Plasma mRNA expression levels mirror those in the tumor and may have a promising role as potential predictive biomarkers for chemotherapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-014-0355-2) contains supplementary material, which is available to authorized users

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore