583 research outputs found
An experimental investigation of the flap-lag stability of a hingeless rotor with comparable levels of hub and blade stiffness in hovering flight
An experimental investigation of the flap-lag stability of a hingeless rotor in hovering flight is presented and discussed. The rotor blade and hub configuration were selected such that the hub and blade had comparable levels of bending stiffness. Experimental measurements of the lag damping were made for various values of rotor rotational speed and blade pitch angle. Specifically at a blade pitch angle of 8 deg at three-quarters radius, the lag damping was determined over a range of rotational speeds from 200 RPM to 320 RPM and also over a range of blade pitch angles from 0 deg to 8 deg
Physical Properties of Complex C Halo Clouds
Observations from the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) Survey
of the tail of Complex C are presented and the halo clouds associated with this
complex cataloged. The properties of the Complex C clouds are compared to
clouds cataloged at the tail of the Magellanic Stream to provide insight into
the origin and destruction mechanism of Complex C. Magellanic Stream and
Complex C clouds show similarities in their mass distributions (slope = -0.7
and -0.6, respectively) and have a common linewidth of 20 - 30 km/s (indicative
of a warm component), which may indicate a common origin and/or physical
process breaking down the clouds. The clouds cataloged at the tail of Complex C
extend over a mass range of 10^1.1 to 10^4.8 solar masses, sizes of 10^1.2 to
10^2.6 pc, and have a median volume density of 0.065 cm^(-3) and median
pressure of (P/k) = 580 K cm^{-3}. We do not see a prominent two-phase
structure in Complex C, possibly due to its low metallicity and inefficient
cooling compared to other halo clouds. From assuming the Complex C clouds are
in pressure equilibrium with a hot halo medium, we find a median halo density
of 5.8 x 10^(-4) cm^(-3), which given a constant distance of 10 kpc, is at a
z-height of ~3 kpc. Using the same argument for the Stream results in a median
halo density of 8.4 x 10^(-5) x (60kpc/d) cm^(-3). These densities are
consistent with previous observational constraints and cosmological
simulations. We also assess the derived cloud and halo properties with three
dimensional grid simulations of halo HI clouds and find the temperature is
generally consistent within a factor of 1.5 and the volume densities, pressures
and halo densities are consistent within a factor of 3.Comment: Accepted for publication in AJ. 54 pages, including 6 tables and 16
figure
Metallicity and Physical Conditions in the Magellanic Bridge
We present a new analysis of the diffuse gas in the Magellanic Bridge (RA>3h)
based on HST/STIS E140M and FUSE spectra of 2 early-type stars lying within the
Bridge and a QSO behind it. We derive the column densities of HI (from
Ly\alpha), NI, OI, ArI, SiII, SII, and FeII of the gas in the Bridge. Using the
atomic species, we determine the first gas-phase metallicity of the Magellanic
Bridge, [Z/H]=-1.02+/-0.07 toward one sightline, and -1.7<[Z/H]<-0.9 toward the
other one, a factor 2 or more smaller than the present-day SMC metallicity.
Using the metallicity and N(HI), we show that the Bridge gas along our three
lines of sight is ~70-90% ionized, despite high HI columns, logN(HI)=19.6-20.1.
Possible sources for the ongoing ionization are certainly the hot stars within
the Bridge, hot gas (revealed by OVI absorption), and leaking photons from the
SMC and LMC. From the analysis of CII*, we deduce that the overall density of
the Bridge must be low (<0.03-0.1 cm^-3). We argue that our findings combined
with other recent observational results should motivate new models of the
evolution of the SMC-LMC-Galaxy system.Comment: Accepted for publication in the Ap
Atmospheric energy spectra in global kilometre-scale models
Eleven 40-day long integrations of five different global models with horizontal resolutions of less than 9 km are compared in terms of their global energy spectra. The method of normal-mode function decomposition is used to distinguish between balanced (Rossby wave; RW) and unbalanced (inertia-gravity wave; IGW) circulation. The simulations produce the expected canonical shape of the spectra, but their spectral slopes at mesoscales, and the zonal scale at which RW and IGW spectra intersect differ significantly. The partitioning of total wave energies into RWs an IGWs is most sensitive to the turbulence closure scheme and this partitioning is what determines the spectral crossing scale in the simulations, which differs by a factor of up to two. It implies that care must be taken when using simple spatial filtering to compare gravity wave phenomena in storm-resolving simulations, even when the model horizontal resolutions are similar. In contrast to the energy partitioning between the RWs and IGWs, changes in turbulence closure schemes do not seem to strongly affect spectral slopes, which only exhibit major differences at mesoscales. Despite their minor contribution to the global (horizontal kinetic plus potential available) energy, small scales are important for driving the global mean circulation. Our results support the conclusions of previous studies that the strength of convection is a relevant factor for explaining discrepancies in the energies at small scales. The models studied here produce the major large-scale features of tropical precipitation patterns. However, particularly at large horizontal wavenumbers, the spectra of upper tropospheric vertical velocity, which is a good indicator for the strength of deep convection, differ by factors of three or more in energy. High vertical kinetic energies at small scales are mostly found in those models that do not use any convective parameterisation
A low H I column density filament in NGC 2403 : signature of interaction or accretion
Date of acceptance: 12/07/2014Observed H i accretion around nearby galaxies can only account for a fraction of the gas supply needed to sustain the currently observed star formation rates. It is possible that additional accretion occurs in the form of low column density cold flows, as predicted by numerical simulations of galaxy formation. To constrain the presence and properties of such flows, we present deep H i observations obtained with the NRAO Green Bank Telescope of an area measuring 4° × 4° around NGC 2403. These observations, with a 5σ detection limit of 2.4 × 1018 cm-2 over a 20 km s-1 linewidth, reveal a low column density, extended cloud outside the main H i disk, about 17′ (~ 16 kpc or ~ 2 R25) to the NW of the center of the galaxy. The total H i mass of the cloud is 6.3 × 106 M⊙, or 0.15 percent of the total H i mass of NGC 2403. The cloud is associated with an 8 kpc anomalous-velocity H i filament in the inner disk, that was previously observed in deep VLA observations. We discuss several scenarios for the origin of the cloud, and conclude that it is either accreting from the intergalactic medium, or is the result of a minor interaction with a neigboring dwarf galaxyPeer reviewe
The Parkes HI Survey of the Magellanic System
We present the first fully and uniformly sampled, spatially complete HI
survey of the entire Magellanic System with high velocity resolution, performed
with the Parkes Telescope. The final data-cubes have an rms noise of sigma ~
0.05 K and an effective angular resolution of 16 arcmin. The Large Magellanic
Cloud (LMC) and the Small Magellanic Cloud (SMC) are associated with huge
gaseous features with a total HI mass of M(HI) = 4.87 10^8 M_sun [d/55 kpc]^2,
if all HI gas is at the same distance of 55 kpc. Approximately two thirds of
this HI gas is located close to the Magellanic Clouds (Magellanic Bridge and
Interface Region), and 25% of the HI gas is associated with the Magellanic
Stream. The Leading Arm has a four times lower HI mass than the Magellanic
Stream, corresponding to 6% of the total HI mass of the gaseous features. We
have analyzed the velocity field of the Magellanic Clouds and their
neighborhood introducing a LMC-standard-of-rest frame. The HI in the Magellanic
Bridge shows low velocities relative to the Magellanic Clouds suggesting an
almost parallel motion, while the gas in the Interface Region has significantly
higher relative velocities indicating that this gas is leaving the Magellanic
Bridge building up a new section of the Magellanic Stream. The clouds in the
Magellanic Stream and the Leading Arm show significant differences, both in the
column density distribution and in the shapes of the line profiles. The HI gas
in the Magellanic Stream is more smoothly distributed than the gas in the
Leading Arm. These morphological differences can be explained if the Leading
Arm is at considerably lower z-heights and embedded in a higher pressure
ambient medium.Comment: 23 pages, 18 figures, accepted for publication in A&
The photometric properties of a vast stellar substructure in the outskirts of M33
We have surveyed sq.degrees surrounding M33 with CFHT MegaCam in the
g and i filters, as part of the Pan-Andromeda Archaeological Survey. Our
observations are deep enough to resolve the top 4mags of the red giant branch
population in this galaxy. We have previously shown that the disk of M33 is
surrounded by a large, irregular, low-surface brightness substructure. Here, we
quantify the stellar populations and structure of this feature using the PAndAS
data. We show that the stellar populations of this feature are consistent with
an old population with dex and an interquartile range in
metallicity of dex. We construct a surface brightness map of M33 that
traces this feature to mags\,arcsec. At these low surface
brightness levels, the structure extends to projected radii of kpc from
the center of M33 in both the north-west and south-east quadrants of the
galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns
with the orientation of the HI disk warp. We calculate a lower limit to the
integrated luminosity of the structure of mags, comparable to a
bright dwarf galaxy such as Fornax or AndII and slightly less than $1\$ of the
total luminosity of M33. Further, we show that there is tentative evidence for
a distortion in the distribution of young stars near the edge of the HI disk
that occurs at similar azimuth to the warp in HI. The data also hint at a
low-level, extended stellar component at larger radius that may be a M33 halo
component. We revisit studies of M33 and its stellar populations in light of
these new results, and we discuss possible formation scenarios for the vast
stellar structure. Our favored model is that of the tidal disruption of M33 in
its orbit around M31.Comment: Accepted for publication in ApJ. 17 figures. ApJ preprint forma
The Arecibo Galaxy Environment Survey III: Observations Toward the Galaxy Pair NGC 7332/7339 and the Isolated Galaxy NGC 1156
Two 5 square degree regions around the NGC 7332/9 galaxy pair and the
isolated galaxy NGC 1156 have been mapped in the 21-cm line of neutral hydrogen
(HI) with the Arecibo L-band Feed Array out to a redshift of ~0.065
km/s) as part of the Arecibo Galaxy Environment Survey. One of the aims of this
survey is to investigate the environment of galaxies by identifying dwarf
companions and interaction remnants; both of these areas provide the potential
for such discoveries. The neutral hydrogen observations were complemented by
optical and radio follow-up observations with a number of telescopes. A total
of 87 galaxies were found, of which 39 (45 per cent) were previously cataloged
and 15 (17 per cent) have prior redshifts. Two dwarf galaxies have been
discovered in the NGC 7332 group and a single dwarf galaxy in the vicinity NGC
1156 . A parallel optical search of the area revealed one further possible
dwarf galaxy near NGC 7332.Comment: 18 pages, 17 figures, uses emulateap
HIPASS High-Velocity Clouds: Properties of the Compact and Extended Populations
A catalog of Southern anomalous-velocity HI clouds at Decl. < +2 deg is
presented, based on data from the HI Parkes All-Sky Survey (HIPASS). The
improved sensitivity (5sigma: T_B = 0.04 K) and resolution (15.5') of the
HIPASS data results in a substantial increase in the number of individual
clouds (1956, as well as 41 galaxies) compared to previous surveys. Most
high-velocity emission features, HVCs, have a filamentary morphology and are
loosely organized into large complexes extending over tens of degrees. In
addition, 179 compact and isolated anomalous-velocity objects, CHVCs, are
identified based on their size and degree of isolation. 25% of the CHVCs
originally classified by Braun & Burton (1999) are reclassified. Both the
entire population of high-velocity emission features and the CHVCs alone have
typical HI masses of ~ 4.5 D(kpc)^2 solar masses and have similar slopes for
their column density and flux distributions. On the other hand, the CHVCs
appear to be clustered and the population can be broken up into three spatially
distinct groups, while the entire population of clouds is more uniformly
distributed with a significant percentage aligned with the Magellanic Stream.
The median velocities are V_GSR = -38 km/s for the CHVCs and -30 km/s for all
of the anomalous-velocity clouds. Based on the catalog sizes, high-velocity
features cover 19% of the southern sky and CHVCs cover 1%. (abridged)Comment: 32 pages, 26 figures in gif format, 2 ascii tables, to appear in the
Jan 2002 issue of The Astronomical Journal, high resolution version available
at http://origins.Colorado.EDU/~mputman/pubs.htm
- …