119 research outputs found

    Pliocene-Quaternary mass wasting along the Ionian Calabrian margin, offshore southern Italy

    Get PDF
    The Ionian Calabrian margin, offshore southern Italy, is a tectonically active area, located above a subduction zone dominated by the rollback of the African plate. A variety of mass wasting features are known to occur along the inner continental slope, based on seafloor mapping during the Italian project MaGIC (Marine Geohazards Along the Italian Coasts). New high-resolution geophysical data are available from a wider area following two surveys, in 2014 of the German RV Meteor, which acquired multibeam bathymetry (50 m DTM) and Parasound sub-bottom profiles, and in 2015 of the Italian RV OGS Explora, which acquired Chirp sub-bottom and multichannel seismic reflection profiles. Here we integrate these data with existing geophysical datasets and published exploration wells to map submarine slope failures and mass wasting deposits within the Pliocene-Quaternary succession. The results show that features of mass failures are widespread along the steep (higher than 10\ub0) slopes of the Ionian margin south of Calabria and within the intra-slope basins of the margin east of Calabria. Seafloor features range from small-scale features (hundreds of meters in extent), mainly located on the canyon headwalls and sidewalls, to larger slides ( up to 10 km in extent) on open slopes. Subsurface profiles across open slopes and intra-slope basins provide evidence of repeated failures, particularly in the upper Quaternary. The stratigraphic distribution of failures suggests that widespread mass wasting features occur above an unconformity tentatively dated to the Middle Pleistocene (<1 Ma). This unconformity also provides a lower bound for the onset of canyon formation. We infer that the onset of both mass wasting and canyon formation could be a response to the rapid km-scale differential uplift of Calabria over last 1 Ma, which has driven a seaward tilting of the Ionian Calabrian margin

    A stratigraphic investigation of the Celtic Sea megaridges based on seismic and core data from the Irish-UK sectors

    Get PDF
    The Celtic Sea contains the world's largest continental shelf sediment ridges. These megaridges were initially interpreted as tidal features formed during post-glacial marine transgression, but glacigenic sediments have been recovered from their flanks. We examine the stratigraphy of the megaridges using new decimetric-resolution geophysical data correlated to sediment cores to test hypothetical tidal vs glacial modes of formation. The megaridges comprise three main units, 1) a superficial fining-upward drape that extends across the shelf above an unconformity. Underlying this drape is 2), the Melville Formation (MFm) which comprises the upper bulk of the megaridges, sometimes displaying dipping internal acoustic reflections and consisting of medium to coarse sand and shell fragments; characteristics consistent with either a tidal or glacifluvial origin. The MFm unconformably overlies 3), the Upper Little Sole Formation (ULSFm), previously interpreted to be of late Pliocene to early Pleistocene age, but here shown to correlate to Late Pleistocene glacigenic sediments forming a precursor topography. The superficial drape is interpreted as a product of prolonged wave energy as tidal currents diminished during the final stages of post-glacial marine transgression. We argue that the stratigraphy constrains the age of the MFm to between 24.3 and 14 ka BP, based on published dates, coeval with deglaciation and a modelled period of megatidal conditions during post-glacial marine transgression. Stratigraphically and sedimentologically, the megaridges could represent preserved glacifluvial features, but we suggest that they comprise post-glacial tidal deposits (MFm) mantling a partially-eroded glacial topography (ULSFm). The observed stratigraphy suggests that ice extended to the continental shelf-edge

    Increased fluid flow activity in shallow sediments at the 3 km Long Hugin Fracture in the central North Sea

    Get PDF
    The North Sea hosts a wide variety of seafloor seeps that may be important for transfer of chemical species, such as methane, from the Earth's interior to its exterior. Here we provide geochemical and geophysical evidence for fluid flow within shallow sediments at the recently discovered, 3-km long Hugin Fracture in the Central North Sea. Although venting of gas bubbles was not observed, concentrations of dissolved methane were significantly elevated (up to six-times background values) in the water column at various locations above the fracture, and microbial mats that form in the presence of methane were observed at the seafloor. Seismic amplitude anomalies revealed a bright spot at a fault bend that may be the source of the water column methane. Sediment porewaters recovered in close proximity to the Hugin Fracture indicate the presence of fluids from two different shallow (<500m) sources: (i) a reduced fluid characterized by elevated methane concentrations and/or high levels of dissolved sulfide (up to 6 mmol L−1), and (ii) a low-chlorinity fluid (Cl ∌305 mmol L−1) that has low levels of dissolved methane and/or sulfide. The area of the seafloor affected by the presence of methane-enriched fluids is similar to the footprint of seepage from other morphological features in the North Sea

    Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction

    Get PDF
    The BRITICE-CHRONO consortium of researchers undertook a dating programme to constrain the timing of advance, maximum extent and retreat of the British–Irish Ice Sheet between 31 000 and 15 000 years before present. The dating campaign across Ireland and Britain and their continental shelves, and across the North Sea included 1500 days of field investigation yielding 18 000 km of marine geophysical data, 377 cores of sea floor sediments, and geomorphological and stratigraphical information at 121 sites on land; generating 690 new geochronometric ages. These findings are reported in 28 publications including synthesis into eight transect reconstructions. Here we build ice sheet-wide reconstructions consistent with these findings and using retreat patterns and dates for the inter-transect areas. Two reconstructions are presented, a wholly empirical version and a version that combines modelling with the new empirical evidence. Palaeoglaciological maps of ice extent, thickness, velocity, and flow geometry at thousand-year timesteps are presented. The maximum ice volume of 1.8 m sea level equivalent occurred at 23 ka. A larger extent than previously defined is found and widespread advance of ice to the continental shelf break is confirmed during the last glacial. Asynchrony occurred in the timing of maximum extent and onset of retreat, ranging from 30 to 22 ka. The tipping point of deglaciation at 22 ka was triggered by ice stream retreat and saddle collapses. Analysis of retreat rates leads us to accept our hypothesis that the marine-influenced sectors collapsed rapidly. First order controls on ice-sheet demise were glacio-isostatic loading triggering retreat of marine sectors, aided by glaciological instabilities and then climate warming finished off the smaller, terrestrial ice sheet. Overprinted on this signal were second order controls arising from variations in trough topographies and with sector-scale ice geometric readjustments arising from dispositions in the geography of the landscape. These second order controls produced a stepped deglaciation. The retreat of the British–Irish Ice Sheet is now the world’s most well-constrained and a valuable data-rich environment for improving ice-sheet modelling.publishedVersio

    The Calabrian Arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard

    Get PDF
    We analyzed the structure and evolution of the external Calabrian Arc (CA) subduction complex through an integrated geophysical approach involving multichannel and single‐channel seismic data at different scales. Pre‐stack depth migrated crustal‐scale seismic profiles have been used to reconstruct the overall geometry of the subduction complex, i.e., depth of the basal detachment, geometry and structural style of different tectonic domains, and location and geometry of major faults. High‐resolution multichannel seismic (MCS) and sub‐bottom CHIRP profiles acquired in key areas during a recent cruise, as well as multibeam data, integrate deep data and constrain the fine structure of the accretionary wedge as well as the activity of individual fault strands. We identified four main morpho‐structural domains in the subduction complex: 1) the post‐Messinian accretionary wedge; 2) a slope terrace; 3) the pre‐Messinian accretionary wedge and 4) the inner plateau. Variation of structural style and seafloor morphology in these domains are related to different tectonic processes, such as frontal accretion, out‐of-sequence thrusting, underplating and complex faulting. The CA subduction complex is segmented longitudinally into two different lobes characterized by different structural style, deformation rates and basal detachment depths. They are delimited by a NW/SE deformation zone that accommodates differential movements of the Calabrian and the Peloritan portions of CA and represent a recent phase of plate re‐organization in the central Mediterranean. Although shallow thrust‐type seismicity along the CA is lacking, we identified active deformation of the shallowest sedimentary units at the wedge front and in the inner portions of the subduction complex. This implies that subduction could be active but aseismic or with a locked fault plane. On the other hand, if underthrusting of the African plate has stopped recently, active shortening may be accommodated through more distributed deformation. Our findings have consequences on seismic hazard, since we identified tectonic structures likely to have caused large earthquakes in the past and to be the source regions for future events

    Emerging IT risks: insights from German banking

    Get PDF
    How do German banks manage the emerging risks stemming from IT innovations such as cyber risk? With a focus on process, roles and responsibilities, field data from ten banks participating in the 2014 ECB stress test were collected by interviewing IT managers, risk managers and external experts. Current procedures for handling emerging risks in German banks were identified from the interviews and analysed, guided by the extant literature. A clear gap was found between enterprise risk management (ERM) as a general approach to risks threatening firms’ objectives and ERM’s neglect of emerging risks, such as those associated with IT innovations. The findings suggest that ERM should be extended towards the collection and sharing of knowledge to allow for an initial understanding and description of emerging risks, as opposed to the traditional ERM approach involving estimates of impact and probability. For example, as cyber risks emerge from an IT innovation, the focus may need to switch towards reducing uncertainty through knowledge acquisition. Since individual managers seldom possess all relevant knowledge of an IT innovation, various stakeholders may need to be involved to exploit their expertise

    Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction

    Get PDF
    The BRITICE-CHRONO consortium of researchers undertook a dating programme to constrain the timing of advance, maximum extent and retreat of the British?Irish Ice Sheet between 31?000 and 15?000?years before present. The dating campaign across Ireland and Britain and their continental shelves, and across the North Sea included 1500?days of field investigation yielding 18?000?km of marine geophysical data, 377 cores of sea floor sediments, and geomorphological and stratigraphical information at 121 sites on land; generating 690 new geochronometric ages. These findings are reported in 28 publications including synthesis into eight transect reconstructions. Here we build ice sheet-wide reconstructions consistent with these findings and using retreat patterns and dates for the inter-transect areas. Two reconstructions are presented, a wholly empirical version and a version that combines modelling with the new empirical evidence. Palaeoglaciological maps of ice extent, thickness, velocity, and flow geometry at thousand-year timesteps are presented. The maximum ice volume of 1.8?m sea level equivalent occurred at 23?ka. A larger extent than previously defined is found and widespread advance of ice to the continental shelf break is confirmed during the last glacial. Asynchrony occurred in the timing of maximum extent and onset of retreat, ranging from 30 to 22?ka. The tipping point of deglaciation at 22?ka was triggered by ice stream retreat and saddle collapses. Analysis of retreat rates leads us to accept our hypothesis that the marine-influenced sectors collapsed rapidly. First order controls on ice-sheet demise were glacio-isostatic loading triggering retreat of marine sectors, aided by glaciological instabilities and then climate warming finished off the smaller, terrestrial ice sheet. Overprinted on this signal were second order controls arising from variations in trough topographies and with sector-scale ice geometric readjustments arising from dispositions in the geography of the landscape. These second order controls produced a stepped deglaciation. The retreat of the British?Irish Ice Sheet is now the world?s most well-constrained and a valuable data-rich environment for improving ice-sheet modelling

    When workplace unionism in global value chains does not function well : exploring the impediments

    No full text
    Improving working conditions at the bottom of global value chains has become a central issue in our global economy. In this battle, trade unionism has been presented as a way for workers to make their voices heard. Therefore, it is strongly promoted by most social standards. However, establishing a well-functioning trade union is not as obvious as it may seem. Using a comparative case study approach, we examine impediments to farm-level unionism in the cut flower industry in Ethiopia. For this purpose, we propose an integrated framework combining two lenses, namely a vertical one (governance and structure of global value chains) and a horizontal one (socio-economic context). We identify 10 impediments that point to three major dimensions contributing to unionisation. These three dimensions include awareness of and interest from workers, legitimacy of trade unions, and capacity of trade unions to act. Furthermore, our results suggest that private social standards may, in certain cases, be counterproductive for the efficient functioning of trade unions. Although we argue that there is no ‘quick fix’ solution to weak workplace unionism at the bottom of global value chains, we stress the importance of considering the dynamics of, and interactions between, the impediments when designing potential support measures that mitigate negative impacts
    • 

    corecore