9 research outputs found

    An Algorithmic Approach to Reducing Taxonomic Detail from Actual Datasets to their Metadata Representation to Increase Findabilty

    No full text
    The rise in demand for more FAIR (Findable, Accessible, Interoperable, and Reusable) data is being answered by increasingly automated ways to capture, process, publish and register biodiversity datasets. Coupled with the increasing possibilities for detecting hundreds of species in a single sample/event (i.e., eDNA), this results in taxonomic information that is multiple levels of magnitude higher than it was a couple of years ago. This spike in content has an adverse effect on the ability of researchers to find relevant datasets within catalogues, due to the limitations in storing and displaying the taxonomic metadata (e.g., in the real-estate of a webpage, in the timeframe required to access the quantity of information, in displaying information to users in a comprehensive and comprehensible way).WoRMS (World Register of Marine Species) is a taxonomic backbone that provides species information. One user of WoRMS is the Integrated Marine Information System (IMIS), a metadata catalogue for marine data, which is also the metadata catalogue of the European node of the Ocean Biodiversity Information System (EurOBIS). Taxonomic information added to the metadata records in IMIS are linked to WoRMS Persitent Identifiers or PIDs (AphiaIDs). Tension between providing all the taxonomic metadata while not overloading the catalogue is being addressed for the use-case of WoRMS+IMIS+EurOBIS. Our approach is to apply a filter-and-replace algorithm during the automated registration of the taxonomic metadata to describe available datasets. This technique reduces the detailed taxonomic information of actual occurrences in the dataset content into practical (good enough) metadata. It takes as input all the species in the dataset along with their hierarchical structure, as well as a configuration parameter allowing for an upper bound to the acceptable number of taxa to be output. The core principle of the algorithm is to start off with the minimal result set containing only the hierarchical root (always "biota") of the complete taxonomy in the dataset, and then to gradually consider replacing each element with its children one level deeper, as long as that replacement keeps fitting the upper bound for the total set.This approach ensures that no coverage is lost, meaning every taxon in the actual dataset is represented in the result, although possibly through one of its parents, X layers up. Note that as long as only one child is underlying, the switch will always happen. So by nature, it will go down to the lowest relevant detail without challenging the upper bound limit. It also allows for variation in the actual processing by allowing for different ordering strategies on the current result-set. Ordering strategies under test are:Order (descending) by weight of underlying available children → favouring more detail in those parts of the tree that have the most members in the setWith weight defined as the count of all underlying available species, ORWeight defined as the sum-product of those species with their actual occurrences in the dataset (thus further favouring detail to those parts of the tree that are more prevalent in the samples)Order (descending) by number of direct children → favouring fanning-out over available high-level siblingsOrder (ascending) by ratio of present children over available children in the taxa → favouring replacing too vague parents with the more specific sublevels that are actually in the datasetAlongside this basic approach, additional pre-processing of the taxa in the dataset can apply some form of "pruning". In this approach all nodes in the available taxon tree of the dataset are ordered (descending) by the weight of underlying children, and those at the end—below some defined cutoff ratio (extra parameter to the algorithm)—are simply discarded. Again, the interpretation of this weight (only species count, or multiplied by occurrence count) yields to variants of the algorithm to be tested. Applying this pruning means a deliberate departure is taken from the full-coverage guarantee mentioned earlier. Caution should be applied, of course, but removing more irrelevant (low occurrence) parts of the tree will allow for making space in the bounded result-set for more detail in the parts that are relevant.In order to create an objective basis for comparing the resulting variants, a number of "qualification" parameters are considered to quantify the effect of the suggested reduction. Based on the datasets in EurOBIS, the variants of this algorithm are being applied and results will be presented on how they affect the various qualification parameters.It is worth observing that both datasets and their metadata records are distinct resources that are being linked to species (taxa references) and that the different purposes they serve require different levels of detail to be presented. As other types of entities (publications, habitats, experts, geography, traits, etc.) are considered for linking to species, we believe similar reduction algorithms will be necessary

    Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia

    No full text

    Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia

    No full text
    Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays

    Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: data from the French RMD COVID-19 cohort of 694 patients

    No full text
    International audienceObjectives: There is little known about the impact of SARS-CoV-2 on patients with inflammatory rheumatic and musculoskeletal diseases (iRMD). We examined epidemiological characteristics associated with severe disease, then with death. We also compared mortality between patients hospitalised for COVID-19 with and without iRMD.Methods: Individuals with suspected iRMD-COVID-19 were included in this French cohort. Logistic regression models adjusted for age and sex were used to estimate adjusted ORs and 95% CIs of severe COVID-19. The most significant clinically relevant factors were analysed by multivariable penalised logistic regression models, using a forward selection method. The death rate of hospitalised patients with iRMD-COVID-19 (moderate-severe) was compared with a subset of patients with non-iRMD-COVID-19 from a French hospital matched for age, sex, and comorbidities.Results: Of 694 adults, 438 (63%) developed mild (not hospitalised), 169 (24%) moderate (hospitalised out of the intensive care unit (ICU) and 87 (13%) severe (patients in ICU/deceased) disease. In multivariable imputed analyses, the variables associated with severe infection were age (OR=1.08, 95% CI: 1.05-1.10), female gender (OR=0.45, 95% CI: 0.25-0.80), body mass index (OR=1.07, 95% CI: 1.02-1.12), hypertension (OR=1.86, 95% CI: 1.01-3.42), and use of corticosteroids (OR=1.97, 95% CI: 1.09-3.54), mycophenolate mofetil (OR=6.6, 95% CI: 1.47-29.62) and rituximab (OR=4.21, 95% CI: 1.61-10.98). Fifty-eight patients died (8% (total) and 23% (hospitalised)). Compared with 175 matched hospitalised patients with non-iRMD-COVID-19, the OR of mortality associated with hospitalised patients with iRMD-COVID-19 was 1.45 (95% CI: 0.87-2.42) (n=175 each group).Conclusions: In the French RMD COVID-19 cohort, as already identified in the general population, older age, male gender, obesity, and hypertension were found to be associated with severe COVID-19. Patients with iRMD on corticosteroids, but not methotrexate, or tumour necrosis factor alpha and interleukin-6 inhibitors, should be considered as more likely to develop severe COVID-19. Unlike common comorbidities such as obesity, and cardiovascular or lung diseases, the risk of death is not significantly increased in patients with iRMD

    Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: data from the French RMD COVID-19 cohort of 694 patients

    No full text
    International audienceObjectives: There is little known about the impact of SARS-CoV-2 on patients with inflammatory rheumatic and musculoskeletal diseases (iRMD). We examined epidemiological characteristics associated with severe disease, then with death. We also compared mortality between patients hospitalised for COVID-19 with and without iRMD.Methods: Individuals with suspected iRMD-COVID-19 were included in this French cohort. Logistic regression models adjusted for age and sex were used to estimate adjusted ORs and 95% CIs of severe COVID-19. The most significant clinically relevant factors were analysed by multivariable penalised logistic regression models, using a forward selection method. The death rate of hospitalised patients with iRMD-COVID-19 (moderate-severe) was compared with a subset of patients with non-iRMD-COVID-19 from a French hospital matched for age, sex, and comorbidities.Results: Of 694 adults, 438 (63%) developed mild (not hospitalised), 169 (24%) moderate (hospitalised out of the intensive care unit (ICU) and 87 (13%) severe (patients in ICU/deceased) disease. In multivariable imputed analyses, the variables associated with severe infection were age (OR=1.08, 95% CI: 1.05-1.10), female gender (OR=0.45, 95% CI: 0.25-0.80), body mass index (OR=1.07, 95% CI: 1.02-1.12), hypertension (OR=1.86, 95% CI: 1.01-3.42), and use of corticosteroids (OR=1.97, 95% CI: 1.09-3.54), mycophenolate mofetil (OR=6.6, 95% CI: 1.47-29.62) and rituximab (OR=4.21, 95% CI: 1.61-10.98). Fifty-eight patients died (8% (total) and 23% (hospitalised)). Compared with 175 matched hospitalised patients with non-iRMD-COVID-19, the OR of mortality associated with hospitalised patients with iRMD-COVID-19 was 1.45 (95% CI: 0.87-2.42) (n=175 each group).Conclusions: In the French RMD COVID-19 cohort, as already identified in the general population, older age, male gender, obesity, and hypertension were found to be associated with severe COVID-19. Patients with iRMD on corticosteroids, but not methotrexate, or tumour necrosis factor alpha and interleukin-6 inhibitors, should be considered as more likely to develop severe COVID-19. Unlike common comorbidities such as obesity, and cardiovascular or lung diseases, the risk of death is not significantly increased in patients with iRMD

    COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: a cohort study

    No full text
    International audienceBackground: Various observations have suggested that the course of COVID-19 might be less favourable in patients with inflammatory rheumatic and musculoskeletal diseases receiving rituximab compared with those not receiving rituximab. We aimed to investigate whether treatment with rituximab is associated with severe COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases.Methods: In this cohort study, we analysed data from the French RMD COVID-19 cohort, which included patients aged 18 years or older with inflammatory rheumatic and musculoskeletal diseases and highly suspected or confirmed COVID-19. The primary endpoint was the severity of COVID-19 in patients treated with rituximab (rituximab group) compared with patients who did not receive rituximab (no rituximab group). Severe disease was defined as that requiring admission to an intensive care unit or leading to death. Secondary objectives were to analyse deaths and duration of hospital stay. The inverse probability of treatment weighting propensity score method was used to adjust for potential confounding factors (age, sex, arterial hypertension, diabetes, smoking status, body-mass index, interstitial lung disease, cardiovascular diseases, cancer, corticosteroid use, chronic renal failure, and the underlying disease [rheumatoid arthritis vs others]). Odds ratios and hazard ratios and their 95% CIs were calculated as effect size, by dividing the two population mean differences by their SD. This study is registered with ClinicalTrials.gov, NCT04353609.Findings: Between April 15, 2020, and Nov 20, 2020, data were collected for 1090 patients (mean age 55·2 years [SD 16·4]); 734 (67%) were female and 356 (33%) were male. Of the 1090 patients, 137 (13%) developed severe COVID-19 and 89 (8%) died. After adjusting for potential confounding factors, severe disease was observed more frequently (effect size 3·26, 95% CI 1·66-6·40, p=0·0006) and the duration of hospital stay was markedly longer (0·62, 0·46-0·85, p=0·0024) in the 63 patients in the rituximab group than in the 1027 patients in the no rituximab group. 13 (21%) of 63 patients in the rituximab group died compared with 76 (7%) of 1027 patients in the no rituximab group, but the adjusted risk of death was not significantly increased in the rituximab group (effect size 1·32, 95% CI 0·55-3·19, p=0·53).Interpretation: Rituximab therapy is associated with more severe COVID-19. Rituximab will have to be prescribed with particular caution in patients with inflammatory rheumatic and musculoskeletal diseases
    corecore