413 research outputs found
Recommended from our members
Syk-dependent Phosphorylation of CLEC-2: A Novel Mechanism of Hem-Immunoreceptor Tyrosine-Based Activation Motif Signaling
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors
Recommended from our members
Loss of Dictyostelium HSPC300 causes a scar-like phenotype and loss of SCAR protein
<p>Abstract</p> <p>Background</p> <p>SCAR/WAVE proteins couple signalling to actin polymerization, and are thus fundamental to the formation of pseudopods and lamellipods. They are controlled as part of a five-membered complex that includes the tiny HSPC300 protein. It is not known why SCAR/WAVE is found in such a large assembly, but in <it>Dictyostelium </it>the four larger subunits have different, clearly delineated functions.</p> <p>Results</p> <p>We have generated <it>Dictyostelium </it>mutants in which the HSPC300 gene is disrupted. As has been seen in other regulatory complex mutants, SCAR is lost in these cells, apparently by a post-translational mechanism, though PIR121 levels do not change. HSPC300 knockouts resemble <it>scar </it>mutants in slow migration, roundness, and lack of large pseudopods. However <it>hspc300</it>-colonies on bacteria are larger and more similar to wild type, suggesting that some SCAR function can survive without HSPC300. We find no evidence for functions of HSPC300 outside the SCAR complex.</p> <p>Conclusion</p> <p>HSPC300 is essential for most SCAR complex functions. The phenotype of HSPC300 knockouts is most similar to mutants in <it>scar</it>, not the other members of the SCAR complex, suggesting that HSPC300 acts most directly on SCAR itself.</p
Recommended from our members
Mouse podoplanin supports adhesion and aggregation of platelets under arterial shear: a novel mechanism of haemostasis
The Podoplanin-CLEC-2 axis is critical in mice for prevention of haemorrhage in the cerebral vasculature during mid-gestation. This raises the question as to how platelets are captured by podoplanin on neuroepithelial cells in a high shear environment. In this study, we
demonstrate that mouse platelets form stable aggregates on mouse podoplanin at arterial shear through a CLEC-2 and Src kinase-dependent pathway. Adhesion and aggregation are also dependent on the platelet glycoprotein (GP) receptors, integrin αIIbβ3 and GPIb, and the feedback agonists ADP and thromboxane A2 (TxA2). CLEC-2 does not bind to von Willebrand factor (VWF) suggesting that the interaction with podoplanin is sufficient to both tether and activate platelets. Consistent with this, surface plasmon resonance
measurements reveal that mouse CLEC-2 binds to mouse podoplanin with nanomolar affinity. The present findings demonstrate a novel pathway of haemostasis in which
podoplanin supporting platelet capture and activation at arteriolar rates of shear
Recommended from our members
Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization,secondary mediators, and Rac
The C-type lectin-like receptor 2 (CLEC-2)activates platelets through Src and Syk tyrosine kinases via a single cytoplasmic YxxL motif known as a hem immunoreceptor tyrosine-based activation motif (hemITAM).Here, we demonstrate using sucrose gradient ultracentrifugation and methyl--cyclodextrin treatment that CLEC-2 translocates to lipid rafts upon ligand engagement and that translocation is essential for hemITAM phosphorylation and signal initiation. HemITAM phosphorylation, but not translocation, is also critically dependent on actin polymerization,Rac1 activation, and release of ADP and thromboxane A2 (TxA2). The role of ADP and TxA2 in mediating hosphorylation is dependent on ligand engagement and rac activation but is independent of platelet aggregation. In contrast,tyrosine phosphorylation of the GPVIFcR -chain ITAM, which has 2 YxxL motifs,is independent of actin polymerization and secondary mediators. These results reveal a unique series of proximal events in CLEC-2 phosphorylation involving actin polymerization, secondary mediators,and Rac activation
Participatory Budgeting and Local Government in a Vertical Society: A Japanese Story
This article examines a case of participatory budgeting in Japanese local government. The article demonstrates how cultural values interact with stages of budgeting (in our case, the co-planning or consultation phase of budgeting). We find three key stakeholders – councillors, administrators and citizens – have varying degree of participation in the budget process. While direct citizen participation has been limited and challenging, we find that local associations and councillors work as lobbyists to influence the budget less publicly. The budget desk led by the mayor plays the dominant role. This article contributes to the broader debate on local government reforms and their translation into varied contexts by problematising such a linear adoption of knowledge from a cultural perspective
Social Enterprise in Europe: At the Crossroads of Market, Public Policies and Third Sector
Peer reviewe
Recommended from our members
Interspecies differences in protein expression do not impact the spatiotemporal regulation of glycoprotein VI mediated activation
Background
Accurate protein quantification is a vital prerequisite for generating meaningful predictions when using systems biology approaches, a method that is increasingly being used to unravel the complexities of sub cellular interactions and as part of the drug discovery process. Quantitative proteomics, flow cytometry and western blotting have been extensively used to define human platelet protein copy numbers, yet for mouse platelets, a model widely used for platelet research, evidence is largely limited to a single proteomic dataset in which the total amount of proteins were generally comparatively higher than those found in human platelets.
Objectives
To investigate the functional implications of discrepancies between levels of mouse and human proteins in the GPVI signalling pathway using a systems pharmacology model of GPVI
Methods
The protein copy number of mouse platelet receptors was determined using flow cytometry. The Virtual Platelet, a mathematical model of Glycoprotein VI (GPVI) signalling, was used to determine the consequences of protein copy number differences observed between human and mouse platelets.
Results and conclusion
Despite the small size of mouse platelets compared to human platelets they possessed a greater density of surface receptors alongside a higher concentration of intracellular signalling proteins. Surprisingly the predicted temporal profile of Syk activity was similar in both species with predictions supported experimentally. Super resolution microscopy demonstrates that the spatial distribution of Syk is similar between species, suggesting that the spatial distribution of receptors and signalling molecules in activated platelets, rather than their copy number, is important for signalling pathway regulation
Recommended from our members
CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development
The C-type lectin receptor CLEC-2 signals through a pathway that is critically dependent on the tyrosine kinase Syk. We show that homozygous loss of either protein results in defects in brain vascular and lymphatic development, lung inflation and perinatal lethality. Furthermore, we find that conditional deletion of Syk in the haematopoietic lineage, or conditional deletion of CLEC-2 or Syk in the megakaryocyte/platelet lineage, also causes defects in brain vascular and lymphatic development, although the mice are viable. In contrast, conditional deletion of Syk in other haematopoietic lineages had no effect on viability or brain vasculature and lymphatic development. We show that platelets, but not platelet releasate, modulate the migration and intercellular adhesion of lymphatic endothelial cells through a pathway that is dependent on CLEC-2 and Syk. These studies demonstrate that megakaryocyte/platelet expression of CLEC-2 and Syk is required for normal brain vasculature and lymphatic development and that platelet CLEC-2 and Syk directly modulate lymphatic endothelial cell behaviour in vitro
Recommended from our members
Super-resolution fluorescence microscopy reveals clustering behaviour of Chlamydia pneumoniae’s major outer membrane protein
Chlamydiapneumoniaeis a Gram-negative bacterium responsible for a number of humanrespiratory diseases and linked to some chronic inflammatory diseases. The major outer membraneprotein (MOMP) ofChlamydiais a conserved immunologically dominant protein located in the outermembrane, which, together with its surface exposure and abundance, has led to MOMP being themain focus for vaccine and antimicrobial studies in recent decades. MOMP has a major role in thechlamydial outer membrane complex through the formation of intermolecular disulphide bonds,although the exact interactions formed are currently unknown. Here, it is proposed that due to thelarge number of cysteines available for disulphide bonding, interactions occur between cysteine-richpockets as opposed to individual residues. Such pockets were identified using a MOMP homologymodel with a supporting low-resolution (~4 Å) crystal structure. The localisation of MOMP in theE. colimembrane was assessed using direct stochastic optical reconstruction microscopy (dSTORM),which showed a decrease in membrane clustering with cysteine-rich regions containing two mutations.These results indicate that disulphide bond formation was not disrupted by single mutants locatedin the cysteine-dense regions and was instead compensated by neighbouring cysteines within thepocket in support of this cysteine-rich pocket hypothesis
The measurement programme at the neutron time-of-flight facility n-TOF at CERN
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented
- …