543 research outputs found
The pestivirus N terminal protease N(pro) redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro.)
The N-terminal protease of pestiviruses, N(pro) is a unique viral protein, both because it is a distinct autoprotease that cleaves itself from the following polyprotein chain, and also because it binds and inactivates IRF3, a central regulator of interferon production. An important question remains the role of N(pro) in the inhibition of apoptosis. In this study, apoptotic signals induced by staurosporine, interferon, double stranded RNA, sodium arsenate and hydrogen peroxide were inhibited by expression of wild type N(pro), but not by mutant protein N(pro) C112R, which we show is less efficient at promoting degradation of IRF3, and led to the conclusion that N(pro) inhibits the stress-induced intrinsic mitochondrial pathway through inhibition of IRF3-dependent Bax activation. Both expression of N(pro) and infection with Bovine Viral Diarrhea Virus (BVDV) prevented Bax redistribution and mitochondrial fragmentation. Given the role played by signaling platforms during IRF3 activation, we have studied the subcellular distribution of N(pro) and we show that, in common with many other viral proteins, N(pro) targets mitochondria to inhibit apoptosis in response to cell stress. N(pro) itself not only relocated to mitochondria but in addition, both N(pro) and IRF3 associated with peroxisomes, with over 85% of N(pro) puncta co-distributing with PMP70, a marker for peroxisomes. In addition, peroxisomes containing N(pro) and IRF3 associated with ubiquitin. IRF3 was degraded, whereas N(pro) accumulated in response to cell stress. These results implicate mitochondria and peroxisomes as new sites for IRF3 regulation by N(pro), and highlight the role of these organelles in the anti-viral pathway
The cycling peroxisomal targeting signal type 1 - receptor Pex5p: reaching the circle’s end with ubiquitin
Peroxisomes are single-membrane bound organelles that are found nearly ubiquitiously in eukaryotic cells. Their main task is the breakdown of fatty acids by beta-oxidation and the detoxification of hydrogen peroxide. However, these so called “multi-purpose organelles” also display several other metabolic functions, which can differ between species, tissues or growth conditions of the cells. This high plasticity of peroxisomal functions is enabled by an adjustment of the protein composition, which in turn is regulated by the dynamically operating protein import receptors. Subsequent to their synthesis on free ribosomes in the cytosol, peroxisomal matrix proteins are recognizes by import receptors by means of a peroxisomal targeting sequence (PTS). Most peroxisomal matrix proteins harbor a PTS-type 1 (PTS1) signal, which is bound by the PTS1-receptor Pex5p in the cytosol. The PTS1-receptor/cargo-complex reaches a docking complex at the peroxisome, where Pex5p is thought to become a building block of a transiently opened translocation pore. After the translocation of the folded cargo proteins over the membrane into the peroxisomal matrix, Pex5p is exported back to the cytosol for further rounds of matrix protein import. This dislocation step comprises the only energy-consuming reactions of the entire receptor cycle, because Pex5p has to be monoubiquitinated at a conserved cysteine before it can be extracted from the membrane by the AAA-type ATPases Pex1p and Pex6p. In case this recycling pathway is hampered, Pex5p gets polyubiquitinated on lysine residues and degraded by the proteasome. This review focuses on the PTS1-receptor Pex5p and discusses recent data and concepts regarding the molecular mechanism of cargo recognition, pore formation, cargo release and ubiquitination-dependent export and highlights the clinical relevance of Pex5p in health and disease
Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis
A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by
heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins.
This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein
import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these
models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that
induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes;
markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo
continued growth if ission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6
complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by
growth and division
The HDAC inhibitor panobinostat (LBH589) inhibits mesothelioma and lung cancer cells in vitro and in vivo with particular efficacy for small cell lung cancer
Lung cancer is the leading cause of cancer deaths in the
United States. Current therapies are inadequate. Histone
deacetylase inhibitors (HDACi) are a recently developed
class of anticancer agents that cause increased acetylation
of core histones and nonhistone proteins leading to
modulation of gene expression and protein activityin -
volved in cancer cell growth and survival pathways.
We examined the efficacyof the HDACi panobinostat
(LBH589) in a wide range of lung cancers and mesotheliomas.
Panobinostat was cytotoxic in almost all 37 cancer
cell lines tested. IC50 and LD50 values were in the
low nmol/L range (4–470 nmol/L; median, 20 nmol/L).
Small cell lung cancer (SCLC) cell lines were among
the most sensitive lines, with LD50 values consistently
<25 nmol/L. In lung cancer and mesothelioma animal
models, panobinostat significantlyde creased tumor
growth byan average of 62% when compared with vehicle
control. Panobinostat was equallye ffective in
immunocompetent and severe combined immunodeficiencymic
e, indicating that the inhibition of tumor growth by
panobinostat was not due to direct immunologic effects.Panobinostat was, however, particularlyeffective in SCLC
xenografts, and the addition of the chemotherapyag ent
etoposide augmented antitumor effects. Protein analysis
of treated tumor biopsies revealed elevated amounts of cell
cycle regulators such as p21 and proapoptosis factors,
such as caspase 3 and 7 and cleaved poly[ADP-ribose] polymerase,
coupled with decreased levels of antiapoptotic
factors such as Bcl-2 and Bcl-XL. These studies together
suggest that panobinostat maybe a useful adjunct in the
treatment of thoracic malignancies, especiallySCLC
MIR376A is a regulator of starvation-induced autophagy
Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration.
Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR.
Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role.
Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy
Peroxisome biogenesis, protein targeting mechanisms and PEX gene functions in plants
Peroxisomes play diverse and important roles in plants. The functions of peroxisomes are dependent upon their steady state protein composition which in turn reflects the balance of formation and turnover of the organelle. Protein import and turnover of constituent peroxisomal proteins is controlled by the state of cell growth and environment. The evolutionary origin of the peroxisome and the role of the endoplasmic reticulum in peroxisome biogenesis is discussed, as informed by studies of the trafficking of peroxisome membrane proteins. The process of matrix protein import in plants and its similarities and differences with peroxisomes in other organisms is presented and discussed in the context of peroxin distribution across the green plants
The making of a mammalian peroxisome, version 2.0: mitochondria get into the mix
This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.A recent report from the laboratory of Heidi McBride (McGill University) presents a role for mitochondria in the de novo biogenesis of peroxisomes in mammalian cells (1). Peroxisomes are essential organelles responsible for a wide variety of biochemical functions, from the generation of bile, to plasmalogen synthesis, reduction of peroxides, and the oxidation of very long chain fatty acids (2). Like mitochondria, peroxisomes proliferate primarily through growth and division of pre-existing peroxisomes (3-6). However, unlike mitochondria, peroxisomes do not fuse (5,7); further, and perhaps most
importantly, they can also be born de novo, a process thought to occur through the generation of pre-peroxisomal vesicles that originate from the endoplasmic reticulum (reviewed in (8,9). De novo peroxisome biogenesis has been extensively studies in yeast, with a major focus on the role of the ER in this process. Comprehensive studies in mammalian cells are, however, scarce (5,10-12). By exploiting patient cells lacking mature peroxisomes, Sugiura et al. (1) now assign a role to ER and mitochondria in de novo mammalian peroxisome biogenesis by showing that the formation of immature preperoxisomes occurs through the fusion of Pex3- / Pex14-containing mitochondriaderived vesicles with Pex16-containing ER-derived vesicles
Endothelial-Mesenchymal Transition of Brain Endothelial Cells: Possible Role during Metastatic Extravasation
Cancer progression towards metastasis follows a defined sequence of events described as the metastatic cascade. For extravasation and transendothelial migration metastatic cells interact first with endothelial cells. Yet the role of endothelial cells during the process of metastasis formation and extravasation is still unclear, and the interaction between metastatic and endothelial cells during transendothelial migration is poorly understood. Since tumor cells are well known to express TGF-beta, and the compact endothelial layer undergoes a series of changes during metastatic extravasation (cell contact disruption, cytoskeletal reorganization, enhanced contractility), we hypothesized that an EndMT may be necessary for metastatic extravasation. We demonstrate that primary cultured rat brain endothelial cells (BEC) undergo EndMT upon TGF-beta 1 treatment, characterized by the loss of tight and adherens junction proteins, expression of fibronectin, beta 1-integrin, calponin and a-smooth muscle actin (SMA). B16/F10 cell line conditioned and activated medium (ACM) had similar effects: claudin-5 down-regulation, fibronectin and SMA expression. Inhibition of TGF-beta signaling during B16/F10 ACM stimulation using SB-431542 maintained claudin-5 levels and mitigated fibronectin and SMA expression. B16/F10 ACM stimulation of BECs led to phosphorylation of Smad2 and Smad3. SB-431542 prevented SMA up-regulation upon stimulation of BECs with A2058, MCF-7 and MDA-MB231 ACM as well. Moreover, B16/F10 ACM caused a reduction in trans-endothelial electrical resistance, enhanced the number of melanoma cells adhering to and transmigrating through the endothelial layer, in a TGF-beta-dependent manner. These effects were not confined to BECs: HUVECs showed TGF-beta-dependent SMA expression when stimulated with breast cancer cell line ACM. Our results indicate that an EndMT may be necessary for metastatic transendothelial migration, and this transition may be one of the potential mechanisms occurring during the complex phenomenon known as metastatic extravasation
Physical fitness and cardiovascular function in multiple sclerosis
Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease that affects the central nervous system. Cardiovascular function (CV) has been shown to be impaired in persons with MS which can lead to the development of comorbidities that can promote disability progression. Cardiorespiratory fitness (CRF) and, to a lesser extent, muscular fitness (MF) have been shown to improve CV function in healthy populations. This thesis examined the relationships between CRF, MF, and exercise presented by randomized controlled trials via meta-analysis. Then, the relationships between CRF, MF, and CV function in persons with MS was determined in order to determine targets for therapy that might improve CV function. Results suggest exercise training improved CRF and MF in RCTs of exercise training examining CRF and MF outcomes. Further, the results of this cross-sectional study indicate significant relationships exist between CRF, MF and CV function in persons with MS. These studies support the potential to improve physiological fitness through exercise training as a possible means to improve CV function in persons with MS. This might be accomplished through exercise training interventions involving aerobic and/or resistance exercise
Role of the Blood-Brain Barrier in the Formation of Brain Metastases
The majority of brain metastases originate from lung cancer, breast cancer and malignant melanoma. In order to reach the brain, parenchyma metastatic cells have to transmigrate through the endothelial cell layer of brain capillaries, which forms the morphological basis of the blood-brain barrier (BBB). The BBB has a dual role in brain metastasis formation: it forms a tight barrier protecting the central nervous system from entering cancer cells, but it is also actively involved in protecting metastatic cells during extravasation and proliferation in the brain. The mechanisms of interaction of cancer cells and cerebral endothelial cells are largely uncharacterized. Here, we provide a comprehensive review on our current knowledge about the role of junctional and adhesion molecules, soluble factors, proteolytic enzymes and signaling pathways mediating the attachment of tumor cells to brain endothelial cells and the transendothelial migration of metastatic cells. Since brain metastases represent a great therapeutic challenge, it is indispensable to understand the mechanisms of the interaction of tumor cells with the BBB in order to find targets of prevention of brain metastasis formation
- …
