355 research outputs found
Hydrogen from waste plastics by way of pyrolysis-gasification
A screw kiln continuous reaction system was used to investigate the production of hydrogen from a representative waste plastic (polypropylene). The reactor system consisted of two stages, with pyrolysis of the plastic in the firststage screw kiln, followed by catalytic gasification of the product pyrolysis gases in the second stage. Two catalysts (a laboratory prepared Ni-Mg-Al catalyst and a commercial nickel catalyst) were used and the process conditions of gasification temperature and water injection rate were investigated. The results showed that the introduction of catalyst into the gasification stage dramatically increased the hydrogen production. The gas and hydrogen production and amount of reacted water per hour were increased with the increase of the gasification temperature from 600 to 900°C for both the Ni-Mg-Al and the commercial nickel catalysts. The rate of water injection was also shown to be critical for hydrogen production. The maximum hydrogen produced was 52% of the maximum theoretical hydrogen available in the polypropylene, representing 22̇38 g of hydrogen per 100 g polypropylene, obtained with the Ni-Mg- Al catalyst, at 800°C gasification temperature and with 28̇46 g/h water injection rate
Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel
Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr−1 to 240 000 t yr−1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial,GHGemissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached
Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene
Catalytic steam reforming of waste high density polyethylene for the production of hydrogen/syngas has been investigated using different zeolite supported nickel catalysts in a two-stage pyrolysis-catalytic steam reforming reactor system. Experiments were conducted into the influence of the type of zeolite where Ni/ZSM5-30, Ni/β-zeolite-25 and the Ni/Y-zeolite-30 catalysts were compared in relation to hydrogen and syngas production. Results showed that the Ni/ZSM5-30 catalyst generated the maximum syngas production of 100.72 mmol g‾¹ plastic , followed by the Ni/β-zeolite-25 and Ni/Y-zeolite-30 catalyst. In addition, the ZSM-5 supported nickel catalyst showed excellent coke resistance and thermal stability. It was found that the Y type zeolite supported nickel catalyst possessed narrower pores than the other catalysts, which in turn, promoted coke deactivation of the catalyst. Large amounts of filamentous carbons were observed on the surface of the Ni/Y-zeolite-30 catalyst from scanning electron microscope images. In addition, the influence of Si:Al molar ratio for the Ni/ZSM-5 catalysts in relation to hydrogen and syngas yield was inv estigated. The results indicated that hydrogen production was less affected by the Si:Al ratio than the type of zeolite support. Also, the Ni/ZSM5-30 catalyst was further investigated to determine the influence of different process parameters on hydrogen and syngas yield via different reforming temperatures (650, 750, 850 °C) and steam feeding rate (0, 3, 6 g h‾¹). It was found that increasing both the temperature and steam feeding rate favoured hydrogen production from the pyrolysis-catalytic reforming of waste polyethylene. The optimum catalytic performance in terms of syngas production was achieved when the steam feeding rate was 6 g h‾¹ and catalyst temperature was 850 °C in the presence of Ni/ZSM5-30 catalyst, with production of 66.09 mmol H 2 g‾¹(plastic) and 34.63 mmol CO gg‾¹(plastic)
Ingestion of marine debris by Wedge-tailed Shearwaters ( Ardenna pacifica ) on Lord Howe Island, Australia during 2005–2018
publisher: Elsevier articletitle: Ingestion of marine debris by Wedge-tailed Shearwaters (Ardenna pacifica) on Lord Howe Island, Australia during 2005–2018 journaltitle: Marine Pollution Bulletin articlelink: https://doi.org/10.1016/j.marpolbul.2018.06.023 content_type: article copyright: © 2018 Elsevier Ltd. All rights reserved.The attached document is the authors’ submitted version of the journal article. You are advised to consult the publisher’s version if you wish to cite from it
Enhancing public awareness and promoting co-responsibility for marine litter in Europe: The challenge of MARLISCO
Marine litter is a pervasive and complex societal problem but has no simple solution. Inadequate practices at all levels of production–use–disposal contribute to accumulation of waste on land and at sea. Enhanced societal awareness but also co-responsibility across different sectors and improved interactions between stakeholders are necessary.
MARLISCO was a European initiative, which developed and implemented activities across 15 countries. It worked towards raising societal awareness and engagement on marine litter, through a combination of approaches: public exhibitions in over 80 locations; a video competition involving 2100 students; and a legacy of educational and decision-supporting tools. 12 national participatory events designed to facilitate dialogue on solutions brought together 1500 stakeholders and revealed support for cross-cutting, preventive measures. Evaluation during implementation shows that these activities are effective in improving individuals' perceptions about the problem but also commitment in being part of the solution. This paper summarises MARLISCO's approach and highlights a selection of outcomes
Foamed Polystyrene in the Marine Environment: Sources, Additives, Transport, Behavior, and Impacts
Twenty Years of the Polyvinyl Chloride Sustainability Challenges
Intense campaigning pressure on the UK PVC sector up to the late 1990s forced strategic engagement with sustainable development. Simplified outcomes from a detailed, consensus-based analysis by science-based NGO The Natural Step (TNS) took the form of five TNS Sustainability Challenges for PVC published in 2000. UK manufacturing companies initially used these Challenges to direct strategic progress. The Challenges have since been progressively taken up across European PVC value chains. The VinylPlus® programme uses an updated version of the five Challenges as a basis for voluntary commitments and transparent auditing of progress against published targets. Initial framing of the five TNS Sustainability Challenges for PVC were drafted consciously for generic relevance to other materials. Assessing the sustainability performance of some alternative materials to PVC against the five Sustainability Challenges reveals different sustainability performance in a range of potential applications. This highlights the danger inherent in automatic selection or deselection of materials in the absence of assessment of options on a ‘level playing field’ of sustainability principles. The five TNS Sustainability Challenges for PVC remain valid today and into the longer-term future as a basis for making stepwise, profitable progress towards the goal of sustainability for PVC and other materials
Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options
[EN] Poly(hydroxy acids) have been gaining increasing attention in the search for novel sustainable materials to replace petrochemical polymers in packaging applications. Poly(hydroxy acids) are polyesters that are obtained using hydroxy acids as the starting materials, which are derived from renewable resources and biowaste. These biopolymers have attracted a lot of attention since some of them will be in the near future competitive in price to polyolefins, show excellent mechanical and barrier properties, and can be potentially recycled by physical and chemical routes. Most of the current poly(hydroxy acids) are mainly prepared by ring-opening polymerization (ROP) of cyclic monomers derived from hydroxy acids. However, their direct polymerization has received much less attention, while one of the advantages of hydroxy acids resides in the presence of an electrophile and a nucleophile in a single molecule that makes them ideal A-B type monomers for self-condensation. This review focuses on the preparation of poly(hydroxy acids) by the self-condensation polymerization of hydroxy acids. Moreover, their end-of-life options are also evaluated considering not only their biodegradability but also their potential to be chemically recycledThe authors thank the European Commission (EC) for financial support through the project SUSPOL-EJDH2020-ITN-2014-642671 and the Spanish Ministry of Science and Innovation (MICI) through the projects RTI2018-097249-B-C21, MAT2017-83373-R, and MAT-2016-78527-P. S. Torres-Giner also acknowledges MICI for his Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) and the financial support received during his stay at the Institute for Polymer Materials (POLYMAT)Gabirondo, E.; Sangroniz, A.; Etxeberria, A.; Torres-Giner, S.; Sardon, H. (2020). Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options. Polymer Chemistry. 11(30):4861-4874. https://doi.org/10.1039/D0PY00088DS48614874113
Application of a neural fuzzy model combined with simulated annealing algorithm to predict optimal conditions for polyethylene waste non-isothermal pyrolysis
Adaptive neural fuzzy model Simulated annealing algorithm A B S T R A C T In the present study, the waste polyethylene (PE) pyrolysis under different non-isothermal conditions was investigated to estimate the optimal conversions and pyrolysis rates. The pyrolysis study was carried out using Thermogravimetry (TG) of the virgin and the waste PE under different heating rates of 5, 10, 15 and 20 C/min. The TG experiments indicated that the virgin and the waste PE pyrolysis processes mainly underwent in the temperature range of 390-510 C. Subsequently, the adaptive neural fuzzy model was adopted to predict the conversions and the pyrolysis rates of the virgin and the waste PE. The optimal operating conditions in different temperature ranges were optimized by the simulated annealing algorithm (SA). Moreover, the R-squared values of the virgin PE conversions (~1) and pyrolysis rates (> 0.999), and the waste PE conversions (~1) and pyrolysis rates (> 0.999) revealed the high accuracy of the adaptive neural fuzzy model predicted results
Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity?
While attention on the importance of closing materials loops for achieving circular economy (CE) is raging, the technicalities of doing so are often neglected or difficult to overcome. However, these technicalities determine the ability of materials to be properly recovered and redistributed for reuse or recycling, given the material, component and product (MCP) state and functionality. Materials have different properties that make them useful for various functions and purposes. A transition, therefore, towards a CE would require the utmost exploitation of all available routes that MCPs can be diverted to, based on their design, use and recovery; ideally, enabling a perpetual looping of them in the economy. Yet, this is difficult to succeed. In the present short communication article, the authors explain how the quality and the way it is meant at different stages of the plastic packaging supply chain affects their potential recycling; and outlines the opportunities and constraints offered by some of the changes that are currently introduced in order to improve their circularity. The purpose of this article is to underpin the need for research that integrates systemic thinking, with technological innovations and regulations at all stages of the supply chain, in an effort to promote sustainable practices to become established.NERC and ESR
- …
