3,923 research outputs found
Magnetic Properties of Monomer and Dimer Tetrahedral VOx Entities Dispersed on Amorphous Silica-based Materials: Prediction of EPR Parameters from Relativistic DFT Calculations and Broken Symmetry Approach to Exchange Couplings
Molecular structures of the isolated tetrahedral oxovanadium(IV) and bridged μ-oxo-divanadium(IV) complexes hosted by the clusters mimicking surfaces of amorphous silica-based materials were investigated using density functional theory (DFT) calculations. Principal values of the g and A tensors for the monomer vanadyl species were obtained using the coupled-perturbed DFT level of theory and the spin–orbit mean-field approximation (SOMF). Magnetic exchange interaction for the μ-oxo bridged vanadium(IV) dimer was investigated within the broken symmetry approach. An antiferromagnetic coupling of the individual magnetic moments of the vanadium(IV) centers in the [VO–O–VO]2+ bridges was revealed and discussed in detail. The coupling explains pronounced decrease of the electron paramagnetic resonance signal (EPR) intensity, observed for the reduced VOx/SiO2 samples with the increasing coverage of vanadia, in terms of transformation of the paramagnetic monomer species into the dimers with S = 0 ground state
Reaction pathways involved in CH4 conversion on Pd/Al2O3 catalysts : TAP as a powerful tool for the elucidation of the effective role of the metal/support interface
Temporal Analysis of Products (TAP) investigation on Natural Gas-fueled Vehicle (NGV) catalysts provides information related to the nature of reaction steps involved over noble metals and at the metal-support interface. The determination of accurate kinetic parameters for methane adsorption from single pulse experiments and subsequent investigation of sequential surface reactions from alternative CH4/O2 pulse experiments is the first step toward the establishment of relevant structure/activity relationships which can highlight the importance of the metal/support interface on freshly-prepared and aged single palladium based catalysts
Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials
This work was supported by the EPSRC grant EP/ J004200/1. D.F. acknowledges financial support from the European Research Council under the European Union Seventh Framework Programme (FP/2007-2013)/ERC GA 306559 and EPSRC (UK, Grant No. EP/J00443X/1). L.C. and M.C. acknowledge the support from the People Programme (Marie Curie Actions) of the European Union’s FP7 Programme THREEPLE (GA 627478) and KOHERENT (GA 299522). A.C. and C.R. acknowledge support from U.S. Army International Technology Center Atlantic for financial support (Grant No. W911NF-14-1-0315).Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial.Publisher PDFPeer reviewe
Two-Fermion Production in Electron-Positron Collisions
This report summarizes the results of the two-fermion working group of the
LEP2-MC workshop, held at CERN from 1999 to 2000. Recent developments in the
theoretical calculations of the two fermion production process in the
electron-positron collision at LEP2 center of the mass energies are reported.
The Bhabha process and the production of muon, tau, neutrino and quark pairs is
covered. On the basis of comparison of various calculations, theoretical
uncertainties are estimated and compared with those needed for the final LEP2
data analysis. The subjects for the further studies are identified.Comment: 2-fermion working group report of the LEP2 Monte Carlo Workshop
1999/2000, 113 pages, 24 figures, 35 table
WW Cross-sections and Distributions
We present the results obtained by the "WW Cross-sections and Distributions"
working group during the CERN Workshop "Physics at LEP2" (1994/1995)Comment: 61 pages, tar'ed gzip'ed uuencoded files, LaTeX, 4 Postscript
figures. To appear in "Physics at LEP2", G.Altarelli and F.Zwirner eds., CERN
Report 199
Cosmic Flows on 100 Mpc/h Scales: Standardized Minimum Variance Bulk Flow, Shear and Octupole Moments
The low order moments, such as the bulk flow and shear, of the large scale
peculiar velocity field are sensitive probes of the matter density fluctuations
on very large scales. In practice, however, peculiar velocity surveys are
usually sparse and noisy, which can lead to the aliasing of small scale power
into what is meant to be a probe of the largest scales. Previously, we
developed an optimal ``minimum variance'' (MV) weighting scheme, designed to
overcome this problem by minimizing the difference between the measured bulk
flow (BF) and that which would be measured by an ideal survey. Here we extend
this MV analysis to include the shear and octupole moments, which are designed
to have almost no correlations between them so that they are virtually
orthogonal. We apply this MV analysis to a compilation of all major peculiar
velocity surveys, consisting of 4536 measurements. Our estimate of the BF on
scales of ~ 100 Mpc/h has a magnitude of |v|= 416 +/- 78 km/s towards Galactic
l = 282 degree +/- 11 degree and b = 6 degree +/- 6 degree. This result is in
disagreement with LCDM with WMAP5 cosmological parameters at a high confidence
level, but is in good agreement with our previous MV result without an
orthogonality constraint, showing that the shear and octupole moments did not
contaminate the previous BF measurement. The shear and octupole moments are
consistent with WMAP5 power spectrum, although the measurement noise is larger
for these moments than for the BF. The relatively low shear moments suggest
that the sources responsible for the BF are at large distances.Comment: 13 Pages, 7 figures, 4 tables. Some changes to reflect the published
versio
Observation of two new baryon resonances
Two structures are observed close to the kinematic threshold in the mass spectrum in a sample of proton-proton collision data, corresponding
to an integrated luminosity of 3.0 fb recorded by the LHCb experiment.
In the quark model, two baryonic resonances with quark content are
expected in this mass region: the spin-parity and
states, denoted and .
Interpreting the structures as these resonances, we measure the mass
differences and the width of the heavier state to be
MeV,
MeV,
MeV, where the first and second
uncertainties are statistical and systematic, respectively. The width of the
lighter state is consistent with zero, and we place an upper limit of
MeV at 95% confidence level. Relative
production rates of these states are also reported.Comment: 17 pages, 2 figure
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
GATE : a simulation toolkit for PET and SPECT
Monte Carlo simulation is an essential tool in emission tomography that can
assist in the design of new medical imaging devices, the optimization of
acquisition protocols, and the development or assessment of image
reconstruction algorithms and correction techniques. GATE, the Geant4
Application for Tomographic Emission, encapsulates the Geant4 libraries to
achieve a modular, versatile, scripted simulation toolkit adapted to the field
of nuclear medicine. In particular, GATE allows the description of
time-dependent phenomena such as source or detector movement, and source decay
kinetics. This feature makes it possible to simulate time curves under
realistic acquisition conditions and to test dynamic reconstruction algorithms.
A public release of GATE licensed under the GNU Lesser General Public License
can be downloaded at the address http://www-lphe.epfl.ch/GATE/
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a
centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The
value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08
^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical,
the second systematic and the third is associated to the ratio of fragmentation
fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/-
0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be
(3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table
- …