9 research outputs found
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Maternal Roux-en-Y gastric bypass impairs insulin action and endocrine pancreatic function in male F1 offspring
Purpose: Obesity is predominant in women of reproductive age. Roux-en-Y gastric bypass (RYGB) is the most common bariatric procedure that is performed in obese women for weight loss and metabolic improvement. However, some studies suggest that this procedure negatively affects offspring. Herein, using Western diet (WD)-obese female rats, we investigated the effects of maternal RYGB on postnatal body development, glucose tolerance, insulin secretion and action in their adult male F1 offspring. Methods: Female Wistar rats consumed a Western diet (WD) for 18 weeks, before being submitted to RYGB (WD-RYGB) or SHAM (WD-SHAM) operations. After 5 weeks, WD-RYGB and WD-SHAM females were mated with control male breeders, and the F1 offspring were identified as: WD-RYGB-F1 and WD-SHAM-F1. Results: The male F1 offspring of WD-RYGB dams exhibited decreased BW, but enhanced total nasoanal length gain. At 120 days of age, WD-RYGB-F1 rats displayed normal fasting glycemia and glucose tolerance but demonstrated reduced insulinemia and higher glucose disappearance after insulin stimulus. In addition, these rodents presented insulin resistance in the gastrocnemius muscle and retroperitoneal fat, as judged by lower Akt phosphorylation after insulin administration, but an increase in this protein in the liver. Finally, the islets from WD-RYGB-F1 rats secreted less insulin in response to glucose and displayed increased β-cell area and mass. Conclusions: RYGB in WD dams negatively affected their F1 offspring, leading to catch-up growth, insulin resistance in skeletal muscle and white fat, and β-cell dysfunction. Therefore, our data are the first to demonstrate that the RYGB in female rats may aggravate the metabolic imprinting induced by maternal WD consumption, in their male F1 descendants. However, since we only used male F1 rats, further studies are necessary to demonstrate if such effect may also occur in female F1 offspring from dams that underwent RYGB operation.5931067107
Planck 2015 results V. LFI calibration
We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% in amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. We provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release
Planck 2015 results XXIV. Cosmology from Sunyaev-Zeldovich cluster counts
We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1−b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1−b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7σ) for the largest estimated value. We also examine constraints on extensions to the base flat ΛCDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base ΛCDM model
Planck 2015 results XX. Constraints on inflation
We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-ℓ polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles ℓ ≈ 20−40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Λ cold dark matter (ΛCDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | αnon - adi | < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum findingthat the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations
Planck 2015 results: XX. Constraints on inflation
We present the implications for cosmic inflation of the Planck measurements
of the cosmic microwave background (CMB) anisotropies in both temperature and
polarization based on the full Planck survey. The Planck full mission
temperature data and a first release of polarization data on large angular
scales measure the spectral index of curvature perturbations to be
and tightly constrain its scale dependence to
when combined with the Planck lensing
likelihood. When the high- polarization data is included, the results are
consistent and uncertainties are reduced. The upper bound on the
tensor-to-scalar ratio is (95% CL), consistent with the
B-mode polarization constraint (95% CL) obtained from a joint
BICEP2/Keck Array and Planck analysis. These results imply that and natural inflation are now disfavoured compared to models
predicting a smaller tensor-to-scalar ratio, such as inflation. Three
independent methods reconstructing the primordial power spectrum are
investigated. The Planck data are consistent with adiabatic primordial
perturbations. We investigate inflationary models producing an anisotropic
modulation of the primordial curvature power spectrum as well as generalized
models of inflation not governed by a scalar field with a canonical kinetic
term. The 2015 results are consistent with the 2013 analysis based on the
nominal mission data.Science and Technology Facilities CouncilThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by EDP Science