54 research outputs found

    GaBoDS: The Garching-Bonn Deep Survey -- I. Anatomy of galaxy clusters in the background of NGC 300

    Full text link
    The Garching-Bonn Deep Survey (GaBoDS) is a virtual 12 square degree cosmic shear and cluster lensing survey, conducted with the [email protected] MPG/ESO telescope at La Silla. It consists of shallow, medium and deep random fields taken in R-band in subarcsecond seeing conditions at high galactic latitude. A substantial amount of the data was taken from the ESO archive, by means of a dedicated ASTROVIRTEL program. In the present work we describe the main characteristics and scientific goals of GaBoDS. Our strategy for mining the ESO data archive is introduced, and we comment on the Wide Field Imager data reduction as well. In the second half of the paper we report on clusters of galaxies found in the background of NGC 300, a random archival field. We use weak gravitational lensing and the red cluster sequence method for the selection of these objects. Two of the clusters found were previously known and already confirmed by spectroscopy. Based on the available data we show that there is significant evidence for substructure in one of the clusters, and an increasing fraction of blue galaxies towards larger cluster radii. Two other mass peaks detected by our weak lensing technique coincide with red clumps of galaxies. We estimate their redshifts and masses.Comment: 20 pages, 16 figures, gzipped. An online postscript version with higher quality figures (3.3 MBytes) can be downloaded from http://www.mpa-garching.mpg.de/~mischa/ngc300/ngc300.ps.gz . Submitted to A&

    HST/ACS observations of shell galaxies: inner shells, shell colours and dust

    Get PDF
    AIM:Learn more about the origin of shells and dust in early type galaxies. METHOD: V-I colours of shells and underlying galaxies are derived, using HST Advanced Camera for Surveys (ACS) data. A galaxy model is made locally in wedges and subtracted to determine shell profiles and colours. We applied Voronoi binning to our data to get smoothed colour maps of the galaxies. Comparison with N-body simulations from the literature gives more insight to the origin of the shell features. Shell positions and dust characteristics are inferred from model galaxy subtracted images. RESULT: The ACS images reveal shells well within the effective radius in some galaxies (at 1.7 kpc in the case of NGC 5982). In some cases, strong nuclear dust patches prevent detection of inner shells. Most shells have colours which are similar to the underlying galaxy. Some inner shells are redder than the galaxy. All six shell galaxies show out of dynamical equilibrium dust features, like lanes or patches, in their central regions. Our detection rate for dust in the shell ellipticals is greater than that found from HST archive data for a sample of normal early-type galaxies, at the 95% confidence level. CONCLUSIONS: The merger model describes better the shell distributions and morphologies than the interaction model. Red shell colours are most likely due to the presence of dust and/or older stellar populations. The high prevalence and out of dynamical equilibrium morphologies of the central dust features point towards external influences being responsible for visible dust features in early type shell galaxies. Inner shells are able to manifest themselves in relatively old shell systems.Comment: accepted by A&A; 36 Figures, 25 pages. A version with full resolution Figures can be found here: http://www.astro.rug.nl/~sikkema/shells.p

    Small scale systems of galaxies I. Photometric and spectroscopic properties of members

    Full text link
    This paper is the first of a series addressed to the investigation of galaxy formation/evolution in small scale systems of galaxies (SSSGs) which are located in low density cosmic environments. Our algorithm for SSSG selection includes galaxy systems of 2 or more galaxies lying within 1000 km/s and a 200 h_{100}^{-1} kpc radius volume. We present the analysis of the photometric and spectroscopic properties of 19 member galaxies belonging to a sample of 11 SSSGs. In the ÎŒe−re\mu_e - r_e plane, early-type members may be considered "ordinary", not "bright" galaxies in the definition given by Capaccioli et al.(1992) with a significant fraction of galaxies having a disk or disky isophotes. We do not detect fine structure and signatures of recent interaction events in the early-type galaxy population, a picture also confirmed by the spectroscopy. At odd, there are several spiral members with open arm configurations as expected in interacting systems. At the same time, emission lines in the spectra of spiral members fall in the HII regions regime defined with diagnostic diagrams (Veilleux & Osterbrock 1987). None of the objects displays unambiguous indication of nuclear activity, although fourspiral nuclei could be ascribed to the class of Seyferts. The star formation rate seems enhanced over the average expected in spiral galaxies only for poorer SSSGs in particular pairs (<50 solar masses per year) but without being in the range of starburst systems.Comment: 24 pages, including 6 figures and 6 tables. Accepted for publication in A

    Astropy: A Community Python Package for Astronomy

    Get PDF
    We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Per\ufa

    Get PDF
    \ua9 2024. The Author(s). Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families

    Nearby early-type galaxies with ionized gas. IV. Origin and powering mechanism of the ionized gas

    Get PDF
    Aims. A significant fraction of early-type galaxies (ETGs) exhibit emission lines in their optical spectra. We attempt to identify the producing the emission mechanism and the ionized gas in ETGs, and its connection with the host galaxy evolution. Methods. We analyzed intermediate-resolution optical spectra of 65 ETGs, mostly located in low density environments and exhibiting spectros-copic diagnostic lines of ISM from which we had previously derived stellar population properties. To extract the emission lines from the galaxy spectra, we developed a new fitting procedure that accurately subtracts the underlying stellar continuum, and accounts for the uncertainties caused by the age-metallicity degeneracy. Results. Optical emission lines are detected in 89% of the sample. The incidence and strength of emission correlate with neither the E/S0 classification, nor the fast/slow rotator classification. By means of the classical [OIII]/H\u3b2 versus [NII]/H\u3b1 diagnostic diagram, the nuclear galaxy activity is classified such that 72% of the galaxies with emission are LINERs, 9% are Seyferts, 12% are composite/transition objects, and 7% are non-classified. Seyferts have young luminostiy-weighted ages ( 725 Gyr), and appear, on average, significantly younger than LINERs and composites. Excluding the Seyferts from our sample, we find that the spread in the ([OIII], H\u3b1, or [NII]) emission strength increases with the galaxy central velocity dispersion . Furthermore, the [NII]/H\u3b1 ratio tends to increase with . The [NII]/H\u3b1 ratio decreases with increasing galactocentric distance, indicative of either a decrease in the nebular metallicity, or a progressive \u201csoftening\u201d of the ionizing spectrum. The average nebular oxygen abundance is slightly less than solar, and a comparison with the results obtained in Paper III from Lick indices shows that it is 480.2 dex lower than that of stars. Conclusions. The nuclear (r &lt; re/16) emission can be attributed to photoionization by PAGB stars alone only for 4822% of the LINER/composite sample. On the other hand, we cannot exclude an important role of PAGB star photoionization at larger radii. For the major fraction of the sample, the nuclear emission is consistent with excitation caused by either a low-accretion rate AGN or fast shocks (200\u2013500 km\u2009s-1) in a relatively gas poor environment ( cm-3), or both. The derived [SII]6717/6731 ratios are consistent with the low gas densities required by the shock models. The derived nebular metallicities are indicative of either an external origin of the gas, or an overestimate of the oxygen yields by SN models
    • 

    corecore