10 research outputs found

    Architecture of collaborating frameworks: simulation, visualisation, user interface and analysis

    Get PDF
    The Anaphe project is an ongoing effort to provide an Object Oriented software environment for data analysis in HENP experiments. A range of commercial and public domain libraries is used to cover basic functionalities; on top of these libraries a set of HENP-specific C++ class libraries for histogram management, fitting, plotting and ntuple-like data analysis has been developed. In order to comply with the user requirements for a command-line driven tool, we have chosen to use a scripting language (Python) as the front-end for a data analysis tool. The loose coupling provided by the consequent use of (AIDA compliant) Abstract Interfaces for each component in combination with the use of shared libraries for their implementation provides an easy integration of existing libraries into modern scripting languages thus allowing for rapid application development. This integration is simplified even further using a specialised toolkit (SWIG) to create "shadow classes" for the Python language, which map the definitions of the Abstract Interfaces almost at a one-to-one level. This paper will give an overview of the architecture and design choices and will present the current status and future developments of the project

    Revealing the importance of interfaces for pure spin current transport

    Get PDF
    Spin transport phenomena underpin an extensive range of spintronic eects. In particular spin transport across interfaces occurs in most device concepts; but is so far poorly understood. As interface properties strongly impact spin transport, one needs to characterize and correlate them to the fabrication method. Here we investigate pure spin current transport across interfaces and connect this with imaging of the interfaces. We study the detection of pure spin currents via the inverse spin Hall eect in Pt and the related spin current absorption by Pt in Py-Cu-Pt lateral spin valves. Depending on the fabrication process to pattern the Cu bridge, we either determine a large (inverse) spin Hall eect signal and low spin absorption by Pt or vice versa. We explain these counter-intuitive results by the fabrication induced varying quality of the Cu/Pt interfaces, which is directly revealed via a special scanning electron microscopy technique for buried interface imaging

    Search for narrow and broad dijet resonances in proton-proton collisions at <tex>\sqrt{s}$</tex>=13 TeV and constraints on dark matter mediators and other new particles

    No full text

    Study of jet quenching with isolated-photon plus jet correlations in PbPb and pp collisions at <tex>\sqrt{s_{NN}}$</tex>=5.02 TeV

    No full text

    Study of jet quenching with isolated-photon plus jet correlations in PbPb and pp collisions at root s(NN)=5.02 TeV

    No full text
    Measurements of azimuthal angle and transverse momentum (p(T)) correlations of isolated photons and associated jets are reported for pp and PbPb collisions at root s(NN) = 5.02 TeV. The data were recorded with the CMS detector at the CERN LHC. For events containing a leading isolated photon with p(T)(gamma) > 40 GeV/c and an associated jet with p(T)(jet) > 30 GeV/c, the photon+jet azimuthal correlation and p(T) imbalance in PbPb collisions are studied as functions of collision centrality and p(T)(gamma). The results are compared to pp reference data collected at the same collision energy and to predictions from several theoretical models for parton energy loss. No evidence of broadening of the photon+jet azimuthal correlations is observed, while the ratio p(T)(jet)/p(T)(gamma) decreases significantly for PbPb data relative to the pp reference. All models considered agree within uncertainties with the data. The number of associated jets per photon with p(T)(gamma) > 80GeV/c is observed to be shifted towards lower p(T)(jet) in central PbPb collisions compared to pp collisions. (C) 2018 The Author. Published by Elsevier B.V

    Precision measurement of the structure of the CMS inner tracking system using nuclear interactions

    No full text
    The structure of the CMS inner tracking system has been studied using nuclear interactions of hadrons striking its material. Data from proton-proton collisions at a center-of-mass energy of 13 TeV recorded in 2015 at the LHC are used to reconstruct millions of secondary vertices from these nuclear interactions. Precise positions of the beam pipe and the inner tracking system elements, such as the pixel detector support tube, and barrel pixel detector inner shield and support rails, are determined using these vertices. These measurements are important for detector simulations, detector upgrades, and to identify any changes in the positions of inactive elements

    Redirecting Th1 and Th2 Responses in Autoimmune Disease

    No full text

    Jet Production Rates in Association with WW and ZZ Bosons in pppp Collisions at s=7s=7 TeV

    Get PDF
    This is the Pre-print version of the Article. The official version can be accessed from the link below - Copyright @ 2012 SpringerMeasurements of jet production rates in association with W and Z bosons for jet transverse momenta above 30 GeV are reported, using a sample of proton-proton collision events recorded by CMS at Ös = 7\textTeV s=7TeV , corresponding to an integrated luminosity of 36 pb − 1. The study includes the measurement of the normalized inclusive rates of jets σ(V + ≥ n jets)/σ(V), where V represents either a W or a Z. In addition, the ratio of W to Z cross sections and the W charge asymmetry as a function of the number of associated jets are measured. A test of scaling at Ös = 7\textTeV s=7TeV is also presented. The measurements provide a stringent test of perturbative-QCD calculations and are sensitive to the possible presence of new physics. The results are in agreement with the predictions of a simulation that uses explicit matrix element calculations for final states with jets.This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of 24 11 Summary Physics; the Institut National de Physique Nucl´eaire et de Physique des Particules / CNRS, and Commissariat `a l’ ´ Energie Atomique et aux ´ Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the State Commission for Scientific Research, Poland; the Fundac¸ ˜ao para a Ciˆencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technologies of the Russian Federation, the Russian Ministry of Atomic Energy and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovaci´on, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation
    corecore