371 research outputs found

    Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique

    Get PDF
    BACKGROUND: One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface. METHODS: This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by PVD layering with SiO(x )to avoid that crack formation in the bone cement. A biomechanical model for vibration fatigue test was done to simulate the physiological and biomechanical conditions of the human knee joint and to prove excessive crack formation. RESULTS: It was found that coated tibial components showed a highly significant reduction of cement cracking near the interface metal/bone cement (p < 0.01) and a significant reduction of gap formation in the interface metal-to-bone cement (p < 0.05). CONCLUSION: Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis interface metal/bone cement. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the interfaces metal/bone cement/bone. With surface coating of the tibial component it should become possible that surface cemented TKAs reveal similar loosening rates as TKAs both surface and stem cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in case of revision and stress shielding for better bone health

    A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking

    Get PDF
    Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a metaanalysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered gene expression levels. At a false discovery rate (FDR) < 0.1, we identified 1270 differentially expressed genes in current vs. never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years after smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analysis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene expression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-re

    Size-Segregated Particle Number Concentrations and Respiratory Emergency Room Visits in Beijing, China

    Get PDF
    BACKGROUND: The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies. OBJECTIVES: The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China. METHODS: Data on particle size distributions from 3 nm to 1 mu m; PM10 (PM &lt;= 10 mu m), nitrogen dioxide (NO2), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single-and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models. RESULTS: Associations of respiratory ERV with NO2 concentrations and 100-1,000 nm-particle number or surface area concentrations were of similar magnitude-that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles &lt;50 nm were not positively associated with ERV, whereas particles 50-100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO2. CONCLUSIONS: Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO2 concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM10 or particle number concentrations in Beijing.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289065900032&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Environmental SciencesPublic, Environmental &amp; Occupational HealthToxicologySCI(E)37ARTICLE4508-51311

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    A meta-analysis of gene expression signatures of blood pressure and hypertension

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension

    Rapid Discrimination of Salmonella enterica Serovar Typhi from Other Serovars by MALDI-TOF Mass Spectrometry

    Get PDF
    Systemic infections caused by Salmonella enterica are an ongoing public health problem especially in Sub-Saharan Africa. Essentially typhoid fever is associated with high mortality particularly because of the increasing prevalence of multidrug-resistant strains. Thus, a rapid blood-culture based bacterial species diagnosis including an immediate sub-differentiation of the various serovars is mandatory. At present, MALDI-TOF based intact cell mass spectrometry (ICMS) advances to a widely used routine identification tool for bacteria and fungi. In this study, we investigated the appropriateness of ICMS to identify pathogenic bacteria derived from Sub-Saharan Africa and tested the potential of this technology to discriminate S. enterica subsp. enterica serovar Typhi (S. Typhi) from other serovars. Among blood culture isolates obtained from a study population suffering from febrile illness in Ghana, no major misidentifications were observed for the species identification process, but serovars of Salmonella enterica could not be distinguished using the commercially available Biotyper database. However, a detailed analysis of the mass spectra revealed several serovar-specific biomarker ions, allowing the discrimination of S. Typhi from others. In conclusion, ICMS is able to identify isolates from a sub-Saharan context and may facilitate the rapid discrimination of the clinically and epidemiologically important serovar S. Typhi and other non-S. Typhi serovars in future implementations

    Immunohistochemical Characterisation of Cell-Type Specific Expression of CK1δ in Various Tissues of Young Adult BALB/c Mice

    Get PDF
    BACKGROUND: Casein kinase 1 delta (CK1delta) phosphorylates many key proteins playing important roles in such biological processes as cell growth, differentiation, apoptosis, circadian rhythm and vesicle transport. Furthermore, deregulation of CK1delta has been linked to neurodegenerative diseases and cancer. In this study, the cell specific distribution of CK1delta in various tissues and organs of young adult BALB/c mice was analysed by immunohistochemistry. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical staining of CK1delta was performed using three different antibodies against CK1delta. A high expression of CK1delta was found in a variety of tissues and organ systems and in several cell types of endodermal, mesodermal and ectodermal origin. CONCLUSIONS: These results give an overview of the cell-type specific expression of CK1delta in different organs under normal conditions. Thus, they provide evidence for possible cell-type specific functions of CK1delta, where CK1delta can interact with and modulate the activity of key regulator proteins by site directed phosphorylation. Furthermore, they provide the basis for future analyses of CK1delta in these tissues

    Investigating the causal effect of smoking on hay fever and asthma: a Mendelian randomization meta-analysis in the CARTA consortium

    Get PDF
    AbstractObservational studies on smoking and risk of hay fever and asthma have shown inconsistent results. However, observational studies may be biased by confounding and reverse causation. Mendelian randomization uses genetic variants as markers of exposures to examine causal effects. We examined the causal effect of smoking on hay fever and asthma by using the smoking-associated single nucleotide polymorphism (SNP) rs16969968/rs1051730. We included 231,020 participants from 22 population-based studies. Observational analyses showed that current vs never smokers had lower risk of hay fever (odds ratio (OR) = 0·68, 95% confidence interval (CI): 0·61, 0·76; P &lt; 0·001) and allergic sensitization (OR = 0·74, 95% CI: 0·64, 0·86; P &lt; 0·001), but similar asthma risk (OR = 1·00, 95% CI: 0·91, 1·09; P = 0·967). Mendelian randomization analyses in current smokers showed a slightly lower risk of hay fever (OR = 0·958, 95% CI: 0·920, 0·998; P = 0·041), a lower risk of allergic sensitization (OR = 0·92, 95% CI: 0·84, 1·02; P = 0·117), but higher risk of asthma (OR = 1·06, 95% CI: 1·01, 1·11; P = 0·020) per smoking-increasing allele. Our results suggest that smoking may be causally related to a higher risk of asthma and a slightly lower risk of hay fever. However, the adverse events associated with smoking limit its clinical significance.</jats:p

    Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus

    Get PDF
    Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p &lt; 1.1E–7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits

    Cell Specific eQTL Analysis without Sorting Cells

    Get PDF
    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus
    corecore