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ARTICLE

Epigenome-wide association study of serum urate
reveals insights into urate co-regulation and the
SLC2A9 locus

Elevated serum urate levels, a complex trait and major risk factor for incident gout, are cor-

related with cardiometabolic traits via incompletely understood mechanisms. DNA methy-

lation in whole blood captures genetic and environmental influences and is assessed in

transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate

(discovery, n= 12,474, replication, n= 5522). The 100 replicated, epigenome-wide sig-

nificant (p < 1.1E–7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum

urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs

are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal

effects on serum urate levels and/or gout, and two of these partly mediate the effects of

urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-

associated CpGs are associated with conditions defining metabolic syndrome, suggesting

that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk

factors. This study demonstrates that EWAS can provide new insights into GWAS loci and

the correlation of serum urate with other complex traits.

https://doi.org/10.1038/s41467-021-27198-4 OPEN
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Serum urate concentrations represent a complex genetic trait,
influenced by genetic variation in many genomic regions1–3,
and by environmental influences such as intake of purine-

rich food, alcohol, fructose, and certain diuretic medications4,5.
Elevated serum urate levels, hyperuricemia, can lead to mono-
sodium urate crystal deposition and thereby cause gout6, the most
common type of inflammatory arthritis among adults. Moreover,
observational studies show that serum urate levels are associated
with various cardiometabolic risk factors including hypertension
and obesity7–9. Gaining insights into the regulation of serum
urate levels is important not only to uncover targets to develop
urate-lowering and anti-inflammatory therapies to treat gout, but
may also provide insights into shared pathways with cardiome-
tabolic risk factors.

Previous studies reported the estimated heritability of serum
urate levels in the general population as 30–70%3,10,11. Large-
scale genome-wide association studies (GWAS) of serum urate
levels have identified urate-associated genetic variants at >200
loci1–3,12. Genes in the identified loci suggest two major themes:
the first is related to urate transport in the kidney and intestine,
which determines net urate excretion, and the second is related to
genetic co-regulation. The genes in loci most strongly associated
with serum urate levels encode for urate transporters (e.g.,
SLC2A9, SLC22A12, ABCG2, SLC22A11, SLC17A1) or of sub-
strates that may be exchanged for urate (e.g., SLC16A9), as well as
for regulatory proteins of urate transporters (e.g., PDZK1)13,14.
While the underlying causal variant rs2231142 at ABCG2, a
missense variant causing reduced function, has been identified15,
the causal mechanisms underlying the strongest genetic associa-
tion signal with serum urate, which maps to the urate transporter
gene SLC2A9, remain largely unknown16.

Regarding the potential genetic co-regulation between serum
urate levels and multiple cardiometabolic risk factors such as
triglyceride levels, blood pressure, obesity, and insulin resistance,
we observed high genetic correlation between these risk factors
and serum urate based on genome-wide genetic association
statistics3. Such genetic co-regulation could explain the observed
association of serum urate and cardiometabolic risk factors from
epidemiological studies. It may, at least in part, be mediated by
transcription factors with major regulatory roles in both liver and
kidney such as HNF1A and HNF4A3. Genetic variants in these
transcription factors are associated not only with serum urate
levels, but also with impaired glucose handling and type 2 dia-
betes mellitus as well as serum cholesterol and triglyceride
levels17–19, suggesting that coordinated gene regulation may have
joint effects on serum urate and hepatic metabolism.

DNA methylation is an important mechanism of gene regulation
and may reveal new insights into the biological processes that
influence serum urate levels. We thus performed epigenome-wide
association studies (EWAS) of serum urate levels with two scientific
aims: first, to detect CpGs associated with serum urate levels and to
investigate whether differential methylation may connect genetic risk
variants of unknown molecular mechanism with serum urate levels.
Second, to evaluate whether urate-associated differentially methylated
CpGs are associated with cardiometabolic risk factors, pointing
toward shared regulation of the implicated genes.

Here we perform meta-analyses of EWAS of serum urate levels
followed by replication, using data from 17,996 individuals from
four ancestry groups. Downstream characterization of urate-
associated CpGs includes association with differential gene
expression, Mendelian randomization (MR), and mediation as
well as enrichment analyses. We show that significantly associated
CpGs explain 11.6% of the serum urate variance in a dataset not
included in the EWAS. Differential methylation of CpGs in
SLC2A9 has causal effects on serum urate levels and mediates the
effect of known urate-associated genetic variants. Urate-associated

CpGs show associations with several cardiometabolic traits, con-
sistent with their observational relationships with serum urate.
Our study generates both independent and complementary
insights to those obtained from GWAS of serum urate levels.

Results
Characteristics of the study participants. The discovery analysis
included up to 12,474 participants from 16 cohorts (European
ancestry [EA]: 6968, African Americans [AA]: 2101, South Asian
ancestry [SA]: 2720, and Sub-Saharan Africans [SSA]: 685). The
replication analysis included 5522 participants from 8 cohorts
with one study (the Normative Aging Study) including only men
(EA: 3338, AA: 2184). Across these cohorts, the median of the
average age within each cohort was 56 (25th, 75th percentile: 51,
63), the median of the proportion of men was 47% (25th, 75th
percentile: 39%, 49%), and the median of mean serum urate levels
was 5.3 mg/dL (25th, 75th percentile: 5.1, 5.6; Supplementary
Data 1 and Supplementary Note 1). Study-specific methods and
information on blood cell type proportions used to estimate
associations between urate and DNA methylation independent of
cell type composition are reported in the Methods section and
Supplementary Data 2 and 3. A flowchart of the meta-analyses
and follow-up characterization is presented in Fig. 1.

Discovery and replication of urate-associated CpGs. The dis-
covery analysis identified 140 significant CpGs (p < 1.1E–7= 0.05/
441,854 CpGs analyzed), of which 100 replicated (consistent effect
direction, p < 0.05 in the replication analysis, and overall meta-
analysisp < 1.1E–7; Supplementary Data 4 and Fig. 2). The estimated
inflation factor of the meta-analysis combining discovery and repli-
cation was 1.06 (Supplementary Fig. 1). The study-specific results had
a median inflation factor of 0.99 (min: 0.86, max: 1.06, Supplemen-
tary Data 2), and were corrected prior to any meta-analysis when >1.
The heterogeneity of most replicated CpGs was low to moderate: the
median I2 from the meta-analysis of the 17 EA studies was 11%
(25th, 75th percentile: 0.0, 31.3), from the five AA studies was 0%
(25th, 75th percentile: 0.0, 35.1), and from the overall meta-analysis
of the four ancestry groups was 30.2% (25th, 75th percentile: 0.0,
60.0, Supplementary Data 4). Of the 32 CpGs that showed hetero-
geneity >50% in the meta-analysis of the four ancestry groups, 90%
(29 CpGs) had effect estimates in the same direction across the
ancestry groups (Supplementary Fig. 2A–AF). Ancestry-specific
results of CpGs with p < 1.1E–7 are reported in Supplementary
Data 5 [EA], 6 [AA], and 7 [SA] if present, and with p < 1E–5
otherwise (Supplementary Data 8 [SSA]).

The follow-up analyses focused on the replicated CpGs from
the overall meta-analysis, in which the CpG with the lowest p
value was at SLC7A11 (cg06690548, p= 2.18E–59). Among the
ten CpGs with the lowest p values, two mapped to PHGDH
(cg14476101, p= 5.87E–38; cg16246545, p= 1.77E–24), which
encodes for 3-phosphoglycerate dehydrogenase, and five to
SLC2A9 (cg21795255, cg20479063, cg11266682, cg00071950,
cg13841979; p < 1E–25), which encodes the urate transporter
GLUT9 and is the locus with the largest effect size in GWAS of
serum urate3. The probe cg21795255 at SLC2A9 had a common
SNP at the extension base of the DNA methylation probe
(rs3796839, minor allele frequency of 46% in GnomAD)20 and
was excluded from all follow-up analyses, which therefore
included 99 replicated CpGs annotated to 81 genes. Of these,
24 genes contained replicated CpGs with significant findings from
our follow-up analyses and are featured in Table 1.

Heritability of urate-associated CpGs and explained serum
urate variance. DNA methylation can be influenced by genetics and
environmental factors21. Heritability of DNA methylation levels at a
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Discovery EWAS of serum urate

Discovery + Replication combined analysis

100 urate-associated CpG sites

N = up to 12,474 participants and 441,854 CpG sites

Follow-up analyses

Pathway and 
GO term 

enrichment

Gene 
expression 

and chromatin 
accessibility

MR analyses: 
causal effect of 
DNAm on urate 

and gout

Enrichment in 
other 

epigenetic 
marks

N = 12,474 + 5,522 participants

140 significant CpGs at pdisc< 1.1E-7

Replicated if consistent direction, prepl < 0.05 and pcomb < 1.1E-7

ARIC, ESTHER, Estonian Biobank, GENOA, KORA, LOLIPOP, LURIC, PIVUS, RODAM, Rotterdam, SHIP-Trend, SKIPOGH, YFS

CARDIA, CHS, JHS, LBC 1936, NAS, Rhineland

Association with 
cardiometabolic

traits

CpGs at SLC2A9 
mediating genetic 
effects on serum 

urate

Fig. 1 Flowchart of analyses. MR Mendelian randomization, GO Gene Ontology. Icons were downloaded from smart.servier.com under the Creative
Commons Attribution 3.0 Unported License.

Fig. 2 CpGs in the EWAS of serum urate from the combined meta-analysis of discovery and replication results (n= 17,996). The CpGs are ordered by
their chromosomal position on the x-axis with their –log10(p value) of the association on the y-axis. CpGs with positive and negative effect estimates are
plotted in the upper and lower panels, respectively. The dotted horizontal lines represent the level of significance corrected for multiple testing (two-sided
p < 1.1E–7). Black: replicated CpGs; brown: gene with replicated CpGs associated with gene expression in monocytes and significant causal effects for
serum urate; blue: replicated CpGs with significant causal effects on serum urate or gout; red: replicated CpGs associated with gene expression in
monocytes or whole blood. Gene names are displayed if the gene had at least one CpG with p value < 1E–14. MR Mendelian randomization.
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CpG estimates the proportion of variance in DNA methylation levels
at the CpG that can be attributed to additive genetics; it does not refer
to germline inheritance of DNA methylation. Across three datasets
from populations of EA, the heritability estimates of the replicated
CpGs varied (Supplementary Data 9). The mean heritability esti-
mates for the 99 replicated, urate-associated CpGs was higher than
the mean heritability across all CpGs assessed in each of the three
studies: 0.36 (urate-associated CpGs) vs. 0.16 (HM450K array) based
on Hannon et al.22, 0.54 vs. 0.19 for van Dongen et al.23, and 0.52 vs.
0.19 for McRae et al.24. Among the seven replicated sites at SLC2A9,
the mean heritability combining the three datasets ranged from 0.39
at cg03725404 to 0.93 at cg11266682. These observations suggest that
the DNA methylation at some of the urate-associated CpGs may
reflect the effect of common genetic variants on serum urate levels.

The proportion of serum urate variance explained by the
replicated, urate-associated CpGs was estimated in a separate study
sample using the coefficient of determination (R2) obtained from
linear regression (Methods). Compared to an age- and sex-adjusted
model, the replicated CpGs explained an additional 11.6% of the
serum urate variance. In a recent GWAS of serum urate based on
data from 457,690 individuals, replicated genetic index variants
explained 7.7% of the age- and sex-adjusted serum urate variance3.
The higher proportion of urate variance explained by the replicated
CpGs as compared to common genetic variants may partly reflect
environmental influences on serum urate levels.

Causal effects of CpGs on serum urate and gout. To evaluate
whether the urate-associated CpGs might causally affect serum
urate levels, we used two-sample MR analysis, where genetic
variants associated with DNA methylation of a CpG (methylation
quantitative trait locus, meQTL) in cis (<500 kb) were used as
proxies or genetic instruments of the CpGs. Cis meQTLs were
available for 27 of the 99 replicated CpGs from a meta-analysis of
cohorts of EA in the Genetics of DNA Methylation Consortium
(GoDMC, Methods). Combined with summary statistics of a
GWAS of serum urate among EA individuals, we found evidence
for significant causal effects of DNA methylation on serum urate
levels at four CpGs at SLC2A9 (p < 1.9E–3= 0.05/27) based on
the multiplicative random effect inverse-variance weighted
method, our primary method (Methods, Table 2). In sensitivity
analysis, all significant causal effects were supported by three or
more other methods that are robust to pleiotropy (Supplementary
Data 10). After additionally removing the meQTLs that were
correlated with any of the five GWAS index SNPs at SLC2A9
among EA persons (Methods), cg13841979 was the only CpG
with ≥4 meQTLs for MR analysis and showed nominally sig-
nificant causal effects on serum urate levels (p= 2.25E–2, Sup-
plementary Data 10). This attenuation of causal effect is
consistent with the observation that DNA methylation at
cg13841979 mediated the effects of two urate GWAS index SNPs
on serum urate, as reported below.

As expected, the causal effects of the four CpGs on serum urate
were consistent with their effect direction from EWAS. At
cg11266682, a promoter-associated CpGs, higher DNA methyla-
tion levels were associated with higher serum urate levels (effect
size: 0.21 mg/dL per standard deviation [SD] of DNA methylation
beta value, p= 8.8E–04). In contrast, for three CpGs further
downstream of the transcription, higher DNA methylation levels
were associated with lower serum urate levels (effect size: −0.65 to
−0.46 mg/dL per SD of DNA methylation beta value, p < 2.1E–4).
At all four CpGs, little evidence of pleiotropy, a threat to MR
assumptions, was detected based on the Egger intercept test (all
p > 0.14). The observed heterogeneity of the meQTL effects on
serum urate levels (p heterogeneity <7.54E–239; Table 2 and
Supplementary Figs. 3A to 3D) suggests complex genetic T
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influences on DNA methylation in this region. Together, these
observations at SLC2A9 are consistent with a causal effect of
differential DNA methylation on serum urate levels.

The same 27 CpGs that were tested for causal effects on serum
urate were also tested for their causal effects on gout. The CpG
cg03725404 at SLC2A9 showed a significant causal effect on gout
(p < 1.9E–3= 0.05/27, Table 2). Consistent with its causal effect on
lower serum urate, cg03725404 conferred lower odds for gout, with
an odds ratio of 0.43 per SD of DNA methylation beta value
(p= 2.98E–9). In sensitivity analysis, the causal effect of cg03725404
for gout was supported by three MR methods robust to pleiotropy
(Supplementary Data 11). The scatter plots of the effects of the
meQTLs on DNA methylation and gout along with the regression
slope from the MR methods showed consistency among MR
methods (Supplementary Fig. 4). The meQTLs included in the MR
analysis for serum urate and gout were independent of each other
(Supplementary Figs. 5A–D and 6, respectively). Leave-one-out
analysis showed that the significant causal effects of DNA
methylation on serum urate and gout were not driven by any single
meQTL at any of the CpGs (Supplementary Fig. 7A–D for serum
urate and Supplementary Fig. 8 for gout). Forest plots of the effects of
the meQTLs showed that the majority of the meQTLs supported the
significant causal effects, despite the presence of heterogeneity
(Supplementary Fig. 9A–D for serum urate and Supplementary
Fig. 10 for gout). Together, these findings show robust results for the
performed MR analyses and support a causal effect of differential
DNA methylation at SLC2A9 on serum urate levels and gout risk.
The reverse MR analysis that assessed the potential causal effects of
serum urate on DNAmethylation levels did not detect any significant
findings among the 99 tested CpGs (Supplementary Note 2).

CpGs at SLC2A9 mediate genetic effects. Given that four CpGs at
SLC2A9 had significant causal effects on serum urate, we hypothe-
sized that these causal effects may mediate genetic effects at this locus.
We previously identified four independent intronic or intergenic
independent index SNPs in two neighboring 1Mb regions at SLC2A9
in a large-scale GWAS meta-analysis of serum urate of EA
populations3. Therefore, we first tested whether the four CpGs
mediated the effects of any of four independent SNPs on serum urate
among EA participants of the ARIC study (n= 637). Two CpGs
(cg11266682 and cg13841979) had significant mediating effects
(p < 0.0125) for two of the independent index SNPs (rs10017305 and
rs6825187; Supplementary Data 12). We next assessed these findings
in two additional studies, KORA (Cooperative Health Research in the
Region of Augsburg, n= 1636) and SHIP (Study of Health in
Pomerania, n= 223), and observed significant evidence for DNA
methylation as a mediator of the effects of these SNPs on serum urate
levels. From the meta-analysis of all three studies, the mediating
effects ranged from 21% by cg13841979 for rs10017305 (mediating
effect: 0.05mg/dL, p= 4.7E–07) to 43% by cg11266682 for rs6825187
(mediating effect: 0.10mg/dL, p= 3.0E–5, Supplementary Data 13).

Urate-associated CpGs, gene expression, and chromatin
accessibility. An important function of DNA methylation is the
regulation of gene expression25. To determine whether the urate-
associated CpGs were associated with gene expression in blood
cells, we used summary statistics of DNA methylation and gene
expression from monocytes and whole blood. Gene expression in
monocytes is particularly relevant for SLC2A9, which is mainly
expressed in monocytes and myeloid dendritic cells among the
blood cell types (Supplementary Fig. 11)26. Of the 99 replicated
CpGs, 26 CpGs were significantly associated with gene expression
in cis in monocytes (p < 5E–4; Supplementary Data 14)27. Some of
the genes harbored multiple urate-associated CpGs (two at
PHGDH, five at SLC2A9, six at SLC1A5). At PHGDH and

SLC1A5, higher DNA methylation levels were associated with
lower gene expression, with CpGs mapping to intron 1 or intron
2 of the gene, depending on the reference isoform (Fig. 3). The
inverse association between DNA methylation levels in intron 1
and gene expression has been reported to be conserved across
vertebrates and is found in multiple human tissues28. Interest-
ingly, at SLC2A9, the effect direction on gene expression for the
five CpGs differed by genomic location (Fig. 4A, B). The three
CpGs annotated as promoter-associated and located at introns 1
or 2 of isoform 1 (cg02734326, cg00071950, cg11266682) showed
inverse associations with gene expression (e.g., cg11266682: effect
−0.037, p= 4.16E–15; Fig. 4A and Supplementary Data 14).
These three promoter-associated CpGs were associated with
higher serum urate levels in EWAS (Fig. 4C). In contrast,
cg03725404, located further downstream in the direction of
transcription, also showed inverse associations with gene
expression (effect −0.024, p= 4.75E–6, Fig. 4B) but was asso-
ciated with lower serum urate levels in EWAS (Fig. 4C). Both
cg11266682 and cg03725404 were also shown to have significant
causal effects on serum urate, as reported above. The different
directions of association across CpGs in SLC2A9 indicate com-
plex regulation. Assuming that DNA methylation affects gene
expression levels, which in turn influence serum urate levels, the
observation that higher DNA methylation levels at the three
promoter-associated CpGs in SLC2A9 were associated with lower
gene expression in monocytes and higher serum urate levels
(Fig. 4B, C) allows for the inference that SLC2A9 expression in
monocytes due to differential methylation at these promoter-
associated CpGs has an inverse relationship with serum urate
levels. As depicted in Fig. 5A, cg11266682 was associated with
lower gene expression levels but showed a positive, causal effect
on serum urate levels. In contrast, cg03725404, a CpG further
downstream in the direction of transcription, was also associated
with lower gene expression but had an inverse, causal effect on
serum urate levels (Fig. 5B).

For gene expression in whole blood, eight CpGs showed significant
associations (Supplementary Data 15). For all seven CpGs with
significant associations with gene expression in both monocytes and
whole blood (two in PHGDH, one in PARP3, two in UAP1L1, and
two in SLC1A5), the directions of effect in the two gene expression
datasets were consistent. CpGs at SLC2A9 were not associated with
gene expression in whole blood.

There are two main transcripts of SLC2A9. Isoform 1 encodes
the long version of the GLUT9 protein, which has been reported
to localize to the basolateral membrane of renal proximal tubule
cells, where it mediates urate reabsorption29. We investigated
whether the DNA methylation pattern of the urate-associated
CpGs in the kidney may be similar to those observed in whole
blood. Whole genome bisulfite sequencing (WGBS) of kidney
samples (n= 5) showed lower DNA methylation levels at the
urate-associated CpGs in the promoter-associated region of
isoform 1, and the pattern of DNA methylation level aligned
with gene expression levels from RNA-sequencing (Fig. 6A). We
further studied whether the urate-associated CpGs mapped into
open chromatin regions, where transcription factor binding may
occur. ATAC-seq data from primary human kidney tissue (n= 3
each from micro-dissected cortex and medulla) showed that the
three promoter-associated CpGs, and—to a lesser extent
cg20479063—mapped to DNA sequences with high chromatin
accessibility in the kidney (Fig. 6B). Taken together, the data from
the kidney samples suggest that the urate-associated CpGs at
SLC2A9 are in a regulatory region with potential effects on the
expression of SLC2A9.

Lastly, we investigated differential gene expression in kidney
tissue using two resources. Of the six urate-associated CpGs in
SLC2A9 that were associated with differential SLC2A9 expression
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in monocytes, four did not show significant associations based on
DNA methylation and gene expression levels quantified from
micro-dissected human tubule tissue, and two did not meet
quality control criteria (Methods, Supplementary Data 16). In the
future, investigation of specific SLC2A9 isoforms and/or of
specific kidney cell types may shed light on the potential different
effects of DNA methylation on gene expression levels in the
kidney and monocyte. Second, we evaluated whether the genes
implicated by the urate-associated CpGs from our study showed
evidence for differential expression in kidney or intestine of a
humanized mouse model of hyperuricemia (Methods). Of the
genes nearest to the urate-associated CpGs, four genes were
differentially expressed at false discovery rate (FDR) < 0.05
(ANKRD11, CEBPB, SLC7A11, and UAP1L1). SLC7A11 had
lower expression in the intestine of mice with hyperuricemia (log2
fold change: −1.34, FDR= 2.9E–2). ANKRD11 had lower
expression in the kidney (log2 fold change: −0.24, FDR= 5.6E–3;
Supplementary Data 17). These findings are consistent with the
urate-associated CpGs being downstream of factors influencing
serum urate levels in mice.

Enrichment of urate-associated CpGs in DNase I hypersensi-
tive sites and transporters. The urate-associated CpGs were enri-
ched in DNase I hypersensitive sites of all blood cells tested (FDR
q < 0.01), with the strongest enrichment observed in CD3 cells
(q < 1e–9). Among histone modifications, H3K4me1, often found at
active and primed enhancers, and H3K4me3, often found at active
promoters, were enriched in all blood cells tested. While the former
were most enriched in primary monocytes and primary hemato-
poietic stem cells, H3K4me3 showed the strongest enrichment in
primary hematopoietic stem cells (Supplementary Figs. 12 and

13)30,31. In contrast, H3K9me3 and H3K27me3, generally associated
with heterochromatin30–33, were not significantly enriched in any
blood cells or tissues tested (Supplementary Figs. 14 and 15). In
addition, among transcription factor binding sites, the urate-
associated CpGs were most enriched in POLR2A, the largest sub-
unit of RNA polymerase II, the major enzyme synthesizing mRNA in
eukaryotes (p < 1E–11, Supplementary Fig. 16). Together, the
observed enrichments suggest a role of the urate-associated CpGs in
transcriptional regulation.

We also assessed the enrichment of genes implicated by urate-
associated CpGs in Gene Ontology (GO) terms, and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Reactome
pathways (Methods). After correction for multiple testing,
significant enrichment was observed for 55 terms (Supplementary
Data 18). The terms or pathways with the strongest enrichment
were related to transmembrane transport of organic acids,
carboxylic acids, amino acids, organic and inorganic anions, as
well as processes in leukocytes and myeloid cells (Fig. 7). These
terms suggest that differentially methylated CpGs capture
information about small molecule transport in urate homeostasis.

Urate-associated CpG sites and other traits. Our prior work on
the genetics of serum urate revealed significant genetic correla-
tions between serum urate and many cardiometabolic traits3.
Using published EWAS summary statistics, we investigated
whether these relationships were also observed when studying
epigenetic variation by examining the association between repli-
cated urate-associated CpGs and other cardiometabolic traits
(Methods, Supplementary Data 19). Liver and kidney traits were
also included due to the important role of these two organs in
urate production and excretion34. Most of these traits were

isoform 1
isoform 2
isoform 3

A B

abs(Pearson r)

PHGDH SLC1A5

Fig. 3 Associations of CpGs at PHGDH and SLC1A5 with serum urate levels. For both PHGDH (A) and SLC1A5 (B), the upper part shows chromosomal
positions on the x-axis and the –log10(p value) on the y-axis, and the lower part shows the correlations between DNA methylation levels of the CpGs. The
replicated CpGs are labeled. Promoter-associated annotation was based on the HM450K annotation file. The gene models were based on RefSeq curated
genes. Associations of DNA methylation with monocyte gene expression were from Kennedy et al. BMC Genomics 2018 and with whole blood from the
KORA study (Methods). The correlations between the CpGs were generated using DNA methylation data from 804 European American participants of the
ARIC study. Gene models were based on Genbank RefSeq (Accession numbers. PHGDH, NM_006623; SLC1A5 isoform 1, NM_005628; isoform 2,
NM_001145144; isoform 3 NM_001145145). assoc. associated.
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included as covariates in the EWAS of serum urate with the goal
of detecting urate-specific DNA methylation signals (Methods).
Of the replicated urate-associated CpGs, 17 had significant
associations with at least one cardiometabolic trait (Fig. 8 and
Supplementary Data 20). Interestingly, the directions of associa-
tion were always consistent with the correlation between serum
urate and these traits in epidemiological studies (Fig. 8)7,35–37. A

few urate-associated CpGs showed associations with a particu-
larly high number of cardiometabolic traits: cg14476101 anno-
tated to PHGDH (six traits), cg06690548 annotated to SLC7A11
(seven traits), and cg02711608 annotated to SLC1A5 (six traits).
Lower DNA methylation level were associated with higher serum
urate levels, as were as higher levels of body mass index (BMI),
blood pressure, triglycerides, liver enzymes, C-reactive protein

A

abs(Pearson r)

Monocyte gene expression 
per DNA methylation beta value

DNA methylation beta value 
per mg/dL of serum urate

SLC2A9
isoform 1
isoform 2

Fig. 4 Associations of CpGs at SLC2A9 with serum urate levels and gene expression in monocytes. CpGs in the SLC2A9 region (A) with the effect size of
DNA methylation on gene expression in monocytes at five replicated CpGs (B) and the effect size of serum urate on DNA methylation levels at these same
five CpGs (C). All labeled CpGs were replicated. In the legend, MR indicates CpGs with a significant causal effect on serum urate levels based on
Mendelian randomization analysis. Colors of the estimates in panels B and Cmatch the color legend in panel A. Promoter-associated annotation was based
on the Illumina HM450K annotation file. The gene models were based on RefSeq curated genes. The correlations between the CpGs were generated using
DNA methylation data from 804 European Americans participants of the ARIC study. The association between DNA methylation and monocyte gene
expression in panel B is based on Kennedy et al. BMC Genomics 2018 (n= 1202). The DNA methylation estimates in panel C are based on the meta-
analysis combining discovery and replication cohorts in the present study (n= 17,996). Genbank RefSeq accession numbers: isoform 1 (NM_020041),
isoform 2 (NM_001001290). MR Mendelian randomization, assoc. associated.
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Fig. 5 Conceptual figure summarizing patterns of relationships between DNA methylation at SLC2A9, its expression in monocytes, and serum urate
levels. The figure focuses on the two CpGs with significant causal effects on serum urate and association with gene expression in monocytes. The inferred
relationship between gene expression and serum urate levels is inverse for the promoter-associated CpG cg11266682 (A, orange shading), and concordant
for CpG cg03725404 (B, blue shading). Solid compound arrows indicate both observed cross-sectional association and causal effect of DNA methylation
on serum urate based on Mendelian randomization analysis. Solid arrows indicate observed cross-sectional associations. Dashed arrows indicate inferred
relationships.
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(CRP), and incident diabetes in their respective EWAS (Fig. 8).
These traits represent components of the metabolic syndrome or
are strongly correlated with the components38, as is serum
urate37. Given that the EWAS of the cardiometabolic traits
adjusted for white blood cell composition in their analysis, the
associations between DNA methylation and traits at the CpGs are
independent of cell type composition. Together, these associa-
tions at these CpGs may reflect DNA methylation signatures of
metabolic syndrome in blood. In contrast, none of the 99 repli-
cated urate-associated CpGs were associated with fasting glucose
and insulin among individuals without diabetes, who are less
likely to be affected by the metabolic syndrome. The urate-
associated CpGs were also not found among those associated with
high-density and low-density cholesterol (HDL-C, LDL-C) and
estimated glomerular filtration rate (eGFR). In addition, 4 of the
17 CpGs that were associated with serum urate and cardiome-
tabolic traits (cg16246545 at PHGDH, cg19693031 at NBPF20/
TXNIP, cg06690548 at SLC7A11, and cg06690548 at CPT1A)
were associated with mostly lipid-related metabolites, quantified
using nuclear magnetic resonance (Supplementary Data 21)39.
The associations of these four CpGs were largely observed with
triglycerides in various lipid subfractions or lipid metabolites that
are part of very low-density lipoprotein and had concordant effect
directions as their associations with serum urate.

Discussion
This large-scale EWAS, based upon data from up to 17,996 partici-
pants largely drawn from population-based studies, identified and
replicated 99 CpGs, at which differential DNA methylation was
significantly associated with serum urate levels. The genes implicated
by these CpGs were strongly enriched in terms and/or pathways

related to small molecule transport, including organic anions and
amino acids. MR analyses supported significant causal effects of some
CpGs on serum urate levels and gout at SLC2A9, the strongest
GWAS locus for serum urate that encodes a major urate transport
protein in the kidney. Mediation analyses supported that genetic
variants at SLC2A9 affect serum urate levels partly via epigenetic
mechanisms. Moreover, 17 urate-associated CpGs showed significant
associations with numerous cardiometabolic traits, with the direction
of association always consistent with the ones between serum urate
and the respective cardiometabolic trait reported from observational
studies. Differential DNA methylation at these sites may therefore
reflect an epigenetic signature of cardiometabolic traits in
whole blood.

Results from dedicated EWAS of serum urate levels have not
been reported previously. One previous EWAS of blood meta-
bolite levels in one of our contributing studies, KORA F4,
examined urate as one of 649 metabolites, and reported sig-
nificant associations between DNA methylation at cg00071950 in
SLC2A9 and serum urate levels40. This EWAS meta-analysis of
measured serum urate levels lends further support to the repro-
ducibility and validity of this prior finding through successful
replication in different study populations, association with gene
expression, and biological plausibility.

In addition to replicated associations between DNA methyla-
tion and serum urate, our study reveals significant causal effects
of DNA methylation at some CpGs of SLC2A9 on serum urate
and gout. Prior exposure to serum urate in its soluble or crystal
form has been shown to heighten the proinflammatory response
of myeloid cells in vitro and in animal models potentially through
epigenetic mechanisms41. This is also known as urate-induced
training immunity. In our study, MR analysis did not identify
significant causal effects of serum urate on DNA methylation, but

CpG island
WGBS Kidney 1
WGBS Kidney 2
WGBS Kidney 3
WGBS Kidney 4
WGBS Kidney 5

RNAseq Kidney 1
RNAseq Kidney 2
RNAseq Kidney 3
RNAseq Kidney 4
RNAseq Kidney 5

A

B
SLC2A9

| cg20479063 
| cg00071950  
| cg11266682

| cg13841979

50 kb

Isoform 1
Isoform 2

Cortex 1

Cortex 2

Cortex 3

Medulla 1

Medulla 2

Medulla 3
| cg02387843

| cg03725404
| cg02734326

Fig. 6 Whole genome bisulfite sequencing and ATAC-sequencing data of kidney tissue at SLC2A9. Whole genome bisulfite sequencing of kidney
samples (n= 5) showed that lower DNA methylation levels at CpGs localized to the promoter-associated region in isoform 1 on SLC2A9 and aligned with
gene expression levels from RNA-sequencing (A). ATAC-sequencing data from primary human kidney tissue (n= 3 from micro-dissected cortex and
medulla each) showed that the three promoter-associated CpGs, and—to a lesser extent cg20479063—mapped to DNA sequences with high chromatin
accessibility in the kidney (B). Gene models were based on Genbank RefSeq (accession numbers: isoform 1, NM_020041; isoform 2, NM_001001290).
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it is conceivable that serum urate might act on other forms of
epigenetic mechanisms, such as histone modification42.

Serum urate levels show high genetic and observational cor-
relations with kidney function measures and with cardiometa-
bolic traits. Previous large EWAS of kidney function measures
focused on eGFR in population-based studies43 or on changes in
kidney function among patients with kidney disease44. Despite
the strong, inverse genetic and observational correlations between
serum urate and eGFR and the well-established role of the kidney
in serum urate homeostasis, the replicated urate-associated CpGs
in our study did not show significant associations when assessed
in EWAS of eGFR. In contrast, many urate-associated CpGs
showed significant associations in results from EWAS of cardi-
ometabolic traits, including triglycerides45, blood pressure46,
BMI47, liver enzymes48, CRP49, as well as diabetes50. Many of
these traits are either conditions that define the metabolic syn-
drome, or directly related to such conditions (high triglyceride
levels, high blood pressure, high BMI, high blood glucose
levels)38. There has been no robust evidence supporting causal
effects of serum urate on cardiometabolic traits51,52. Instead, our

observations are consistent with shared gene regulatory programs
resulting in a common DNA methylation signature of serum
urate and metabolic syndrome in whole blood.

Our study also provides additional insights into a major
transporter of serum urate. SLC2A9 has consistently been
detected as the strongest locus in GWAS of serum urate with
multiple independent signals1,3,16,53–57, but the mechanism
underlying the GWAS signal is largely unknown. The association
between genetic variants at SLC2A9 and serum urate levels may
be mediated by transcript- or tissue-specific regulatory mechan-
isms. SLC2A9 has two described isoforms whose gene products
have equivalent urate transport activity but differ in the
N-terminal cytosolic portion of the protein58. SLC2A9 shows high
complexity in human kidney tissue; the two isoforms of SLC2A9
have been reported to differ in cellular localization possibly
affecting their function in urate homeostasis. Isoform 1 was found
to be expressed at the basolateral side of the proximal tubule,
while isoform 2 was expressed at the apical side of the collecting
duct29. The functional consequences of this complexity are not
yet clear. In our study, we observed complex relations of DNA
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methylation levels at SLC2A9 with gene expression in monocytes
and serum urate. Our findings support an inferred inverse rela-
tionship between DNA methylation-relatedSLC2A9 expression in
monocytes and serum urate levels at some CpGs. An inverse
relationship between GLUT9 expression in the kidney and serum
urate would be difficult to explain. Loss-of-function mutations at
SLC2A9 in humans result in type 2 familial renal hypouricemia
(OMIM# 612076) supporting a role for GLUT9 as a high-capacity
urate transporter in tubular urate reuptake from urine into blood.
Therefore, a positive association between SLC2A9 gene expression
in the kidney and serum urate levels would be expected58.

However, SLC2A9 is expressed in a range of extra-renal tissues,
with high abundance in the liver and lower abundance in the heart,
lung, and intestine59–61. In mouse hepatocytes, GLUT9 is expressed
in the basolateral membrane60, across which urate uptake from blood
into the cell can occur62. Therefore, the role of GLUT9-mediated
transport of urate may potentially affect serum urate levels in dif-
ferent directions, depending on transcript isoform and tissue locali-
zation. For example, loss of function mutations in dogs and liver-
specific inactivation of SLC2A9 in a mouse model result in
hyperuricemia62,63. In addition, basolateral localization of GLUT9
has also been reported in mouse enterocytes of the small intestine64,
and enterocyte-specificSlc2a9knock-out resulted in reduced intestinal
urate excretion and hyperuricemia65. A role for SLC2A9 in intestinal
excretion would also be consistent with an inverse relationship
between DNA methylation-relatedSLC2A9 expression and serum
urate levels. Therefore, it is conceivable that the DNA methylation
signals we detected at SLC2A9 in blood represent a signature for
urate transport into enterocytes, hepatocytes, and/or other cell types,
as a constituent of a urate secretion pathway, a mechanism that
would lower serum urate levels. Roles for SLC2A9 in urate uptake
into cells in both secretory and reabsorption pathways may also help
explain some of the heterogeneity of associations of SNPs in the
SLC2A9 locus3. Regardless of the mechanism, the finding that urate-
associated genetic variants at SLC2A9 could affect serum urate levels
via epigenetic mechanisms may be of potential clinical relevance, as
each SD higher DNA methylation at CpGs at SLC2A9 conferred up
to 57% lower odds of gout, the most common form of inflammatory
arthritis in adults.

Terms or pathways enriched for urate-associated CpGs were
mainly related to transmembrane transport of organic acids, car-
boxylic acids, amino acids, and organic and inorganic anions. This
does not only align with uric acid as an organic acid, but also with
several genes encoding enzymes and transporters related to amino
acid generation and movement across membranes. For example,
PHGDH encodes 3-phosphoglycerate dehydrogenase, which cata-
lyzes the oxidation of 3-phosphoglycerate to 3-phosphohydroxypyr-
uvate, the committed step in the biosynthesis of L-serine. Inhibition
of PHGDH alters nucleotide metabolism via disruption of mass
balance within central carbon metabolism, leading to changes in the
pentose phosphate pathway and the tri-carboxylic acid cycle66. In
addition, PHGDH also has a role in lipid metabolism. Knockdown of
PHGDH in liver cell lines resulted in lower expression of LPL, the
gene encoding lipoprotein lipase, and higher expression of LDLR and
ABCA1, both important in lipid transport67. The genes SLC1A5,
SLC7A11, and SLC43A1 encode transport proteins for neutral amino
acids68, cysteine as well as glutamate69, and for branched-chain
amino acids70, respectively. The CpGs in genes involved in the
transport of small molecules such as amino acids, represented the
CpGs with the strongest associations in this EWAS of serum urate.
These CpGs were also associated with other cardiometabolic traits.
Taken together, these results suggest that shared epigenetic regulatory
mechanisms may have an important role in urate
homeostasis15,71–73.

Strengths of our study include its large sample size, the replication
of findings in separate study samples, and the use of rigorous sta-
tistical methods. The agreement of findings based on multiple layers
of complementary evidence and the biological plausibility of many of
the results support the validity of our findings. These findings provide
new insights into the epigenetic regulation of serum urate levels that
are complementary to genetic association studies of serum urate.
Potential limitations of our study relate to the quantification of DNA
methylation from whole blood or from specific blood cell popula-
tions, which may not be representative of other important organs of
urate homeostasis such as the kidney or liver. However, serum urate
was also measured in blood, where its levels may be influenced by
metabolic functions beyond simply reflecting purine metabolism. In
addition, serum urate concentrations play an important role in gout,
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Fig. 8 Urate-associated CpGs that were associated with cardiometabolic and kidney traits. All traits that were included in the lookup are shown,
including those without reported associations with urate-associated CpGs. Blue: positive association between DNA methylation and trait levels; Red:
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making blood an attractive target tissue for studies of urate home-
ostasis and gout.

In summary, meta-analyses of EWAS of serum urate levels and
downstream characterization identify urate-associated CpGs that
explain a substantial proportion of serum urate variance, mediate
some of the genetic effects on serum urate levels, and show
associations with several cardiometabolic traits consistent with
the observed relationships between serum urate and these traits.
These findings constitute complementary evidence to insights
from GWAS of serum urate levels.

Methods
Study samples and workflow. The discovery and replication analyses were con-
ducted based on a pre-specified analysis plan. A script (https://github.com/genepi-
freiburg/ckdgen-pheno/tree/ckdgen-ewas-pheno) was circulated to all participating
cohorts (Supplementary Data 1) to generate summary files that were inspected by a
central analysis team. All studies were community-based or non-clinical popula-
tions. Each cohort conducted study-specific EWAS and uploaded epigenome-wide
summary statistics. Before the meta-analysis, we conducted quality control of
study-specific results, which included the assessment of the distributions of effect
sizes, standard errors, and p values within each study and across studies. Supple-
mentary Data 2 reports study-specific methods, including the DNA methylation
detection p value and processing pipeline. Supplementary Data 3 reports the white
blood cell proportions in each cohort, which were used as covariates to estimate
associations between urate and DNA methylation independent of cell type com-
position. Study research protocols were approved by the respective ethics com-
mittees. All participants in all studies provided written informed consent.

DNA methylation quantification and quality control. Genomic DNA was
extracted from peripheral blood. Levels of DNA methylation were quantified using
the Infinium MethylationEPIC BeadChip array (EPIC, six studies), the Illumina
Infinium HumanMethylation450K BeadChip array (HM450K, 17 studies), or the
Illumina Infinium HumanMethylation27 BeadChip array (HM27K, one study).
DNA methylation data preprocessing was performed according to individual study
protocols, which included background correction, quantile normalization, probe
filtering, sample filtering, SNP matching to the SNP control probe locations, outlier
filtering, and assay type correction (Supplementary Data 2).

Study-specific EWAS. Ancestry-specific association analyses were conducted
within each study. Among the 24 contributing cohorts, 14 cohorts excluded par-
ticipants who were on urate-lowering medications, whereas the other cohorts did
not have this information available (Supplementary Data 1). The methylation levels
at each CpG probe were represented as beta values, which can be interpreted as the
proportion of CpG sites that were methylated. The beta values were analyzed as the
dependent variable with serum urate as the independent variable in a linear
regression model adjusting for age, sex, BMI, current smoking, eGFR, HDL-C,
systolic blood pressure (SBP), log-transformed levels of CRP and triglycerides,
genetic principal components (PC), and estimated or measured blood cell type
proportions in order to allow for detecting associations between serum urate and
DNA methylation levels independent of differences in cell type composition74.
Additional study-specific technical covariates included control probe PCs5, study
center, processing batch, sentrix ID, and sentrix position, as applicable.

Discovery and replication meta-analysis. Studies were separated into discovery
and replication cohorts by chronological order of contribution to this project
(Supplementary Data 1). Only CpG sites common to both the EPIC and HM450K
were included in the meta-analysis (n= 441,854). CpG probes overlapping with
SNPs were annotated using information from Illumina.

Prior to meta-analysis, each set of study-specific results was adjusted for test
statistic inflation using the BACON method, which was developed to control for
bias and inflation in EWAS using an empirical null distribution approach and
assumes that the test statistics are a mixture of three distributions: negative, positive
and null associations75. The inflation factor is estimated from the distribution of
null association. We conducted inverse-variance weighted fixed effects meta-
analysis using the R package metafor (version 2.1-0) for discovery, replication, and
for combining the results of discovery and replication76. CpG sites were excluded if
their available sample size was less than half of the sample size in the respective
meta-analyses, or if their I2 heterogeneity estimate was >95%.

The statistical significance threshold for the discovery step was p < 1.1E–7
(=0.05/441,854). The replication criteria were: Pdiscovery < 1.1E–7, Preplication < 0.05
with consistent effect direction, and Pcombined < 1.1E–7. For the replicated CpGs, we
quantified study heterogeneity within an ancestry using the I2 from a meta-analysis
including all studies within an ancestry, namely EA (17 studies) and AA (5 studies).
We further quantified heterogeneity among the four ancestry groups using the I2

from a transethnic meta-analysis that combined the summary statistics of the
meta-analyses of EA, and AA with those from the LOLIPOP study (SA), and the
RODAM study (SSA). Given that there was only a single study each including

participants with SA and SSA ancestry, the I2 from this transethnic meta-analysis
might represent both ancestry and study heterogeneities.

Heritability of replicated CpG sites and explained urate variance. We used
three sources of DNA methylation heritability estimates from whole blood to
characterize the replicated urate-associated CpGs: (a) a twin study of 1464 indi-
viduals from Great Britain [Hannon et al.], (b) a twin study of 2386 individuals
from the Netherlands [van Dongen et al.], and (c) a family-based study of 614
individuals from Australia [McRae et al.]22–24. Hannon et al. included 426
monozygotic (MZ) and 306 same-sex dizygotic (DZ) twin pairs to estimate the
proportion of the variance of DNA methylation explained by additive genetic (A),
shared environment (C), and unshared environmental (E) factors22. Van Dongen
et al. included 769 MZ and 424 DZ twin pairs for the ACE model analysis23. McRae
et al. studied 614 individuals from 117 families and used intraclass correlation
analysis to partition the variance of DNA methylation into additive genetics and
environmental components24. DNA methylation levels of these three studies were
quantified using the HM450K array.

The proportion of serum urate variance explained was calculated based on data
from 1832 participants of the KORA-FF4 study with DNA methylation levels
quantified using blood samples collected in 2014. Among the participants of the
KORA-FF4 study, 988 were also participants of the KORA F4 cohort, one of the
discovery cohorts, with DNA methylation levels quantified using blood samples
collected in 2007, 7 years earlier than those in the KORA-FF4 study. Data were
available for 97 of the 99 replicated, urate-associated CpGs (missing observations
for cg08257009 and cg05201185). To enable comparison of the proportion of
explained urate variance to the one obtained from age- and sex-adjusted GWAS
summary statistics3, two models were computed: a base model of the proportion of
urate variance explained by age and sex, and an extended model that additionally
included residuals from a regression of the CpGs on sex, age, and cell type
composition. The proportion of serum urate variance explained by the replicated
CpGs was then calculated as the difference in coefficient of determination (R2)
between the two models.

Forward Mendelian randomization (MR) analysis: causal effects of DNA
methylation on serum urate and gout. To evaluate whether the urate-associated
CpGs might have a causal role in influencing serum urate levels or gout, we
conducted two-sample MR analyses using meQTLs as genetic instruments of the
replicated CpGs. The random assignment of alleles during meiosis mimics treat-
ment allocation in randomized controlled trials. Using meQTLs as proxies or
genetic instruments of DNA methylation enables inferences on the causal effects of
DNA methylation on serum urate or gout, provided that the meQTLs meet the
instrumental variable assumptions: (1) the meQTLs are associated with DNA
methylation, (2) the meQTLs are not associated with potential confounders of the
association between DNA methylation and serum urate or gout, and (3) the
meQTLs are only associated with serum urate or gout through DNA methylation,
i.e., without pleiotropic effects77. While assumptions 2 and 3 cannot be fully ver-
ified, we have addressed these assumptions in our selection criteria of meQTLs and
analysis methods as detailed below.

The meQTLs of the CpGs were selected two steps. In the first step, we addressed the
three instrumental variable assumptions. To address assumption 1, we selected
independent cis meQTLs as genetic instruments with strong association with DNA
methylation (p < 5E–8). To address assumptions 2 and 3, we removed those with
genome-wide significant association (p < 5E–8) with potential confounders, and with
stronger associations with the outcome than with DNA methylation, which suggests
pleiotropic effects of a meQTL or may lead to reverse causation. In this first step of
instrument selection, we selected cis meQTLs for each CpG (within 500 kb of the CpG)
from the meta-analysis of the GoDMC with MAF> 1% and p < 5e–8 to avoid weak
instrument bias78. The meQTLs were further pruned based on the following criteria: (a)
a clumping threshold of r2 < 0.05, (b) associated with potential confounders (BMI,
current smoking, HDL-C, SBP, CRP, and triglycerides) at p < 5E–8, (c) failed Steiger
filtering, i.e., displayed stronger association with the outcome than the exposure, and (d)
failed harmonization checks of the harmonise_data function in the TwoSampleMR
package, which matches the effect allele of the SNPs associated with the exposure and
the outcome and flags palindromic SNPs with allele frequency close to 0.5 as
ambiguous79,80. The sources of the GWAS summary statistics of the potential
confounders are reported in Supplementary Data 22. In the second step, to ensure that
the meQTLs for each CpG were indeed conditionally independent, we conducted
conditional analysis using Genome-wide Complex Trait Analysis (GCTA) to obtain the
conditional p value for each meQTL controlling for other meQTLs of the same CpG
(command: cojo-cond)81. As the reference panel, we used 13,558 randomly selected
individuals of British descent, and 16,969,363 SNPs with MAF > 0.01% after quality
control as reported previously3. We retained only meQTLs with conditional p < 5E–8 as
genetic instruments of the CpGs. The median numbers of meQTLs among the 92
replicated CpGs outside of SLC2A9 was 2 (25th, 75th percentile: 0, 5), whereas it was 20
(25th, 75th percentile: 8, 21) among the 7 CpGs at SLC2A9.

The genetic association summary statistics for meQTLs, serum urate, and gout
were generated among EA individuals. The meQTL summary statistics were
obtained from a meta-analysis of the GoDMC Consortium (max. n= 27,750 from
36 EA studies), which included some of the participating studies of the EWAS of
serum urate82. DNA methylation in GoDMC was measured in whole blood or cord
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blood using the HM450K or EPIC BeadChips. The 1000 Genomes reference panel
was used for genotype imputation. The analysis in each cohort had two steps. First,
residuals of DNA methylation beta values were generated by adjusting out age, sex,
predicted white blood cell type proportions, predicted smoking status based on
published results of smoking-associated DNA methylation, and genetic PCs. Next,
these residuals were rank transformed and standardized and used for genetic
association analysis with adjustment for relatedness in family-based studies. The
SNP effect sizes can be interpreted as SD higher DNA methylation per allele. The
meta-analysis was conducted in two phases. First, each GoDMC study analyzed the
association between all SNPs and all CpGs, returning only associations with
p < 1E–5. Next, these associations with p < 1e–5 were combined to create a
candidate list of meQTL associations, which included cis associations found in at
least one dataset and trans associations in at least two datasets. The association
statistics of these candidate meQTLs (n= 120,212,413) were obtained from all
cohorts, and then combined using fixed-effect meta-analyses82.

The GWAS summary statistic for serum urate (n= 288,649) and gout
(n= 692,537) were obtained from recent GWAS meta-analyses of EA, samples
from the CKDGen Consortium3. We required each CpG to have at least four cis
(<500 kb) meQTLs as genetic instruments. As the primary MR analysis method, we
used the multiplicative random effect inverse-variance weighted method as
recommended by the guidelines for MR investigation77. We used the Egger
intercept to evaluate potential pleiotropy, and Cochran’s Q test for assessing
heterogeneity78,83,84. Sensitivity analysis using other MR methods that are robust to
pleiotropy were conducted: MR Egger, simple mode, weighted median, and
weighted mode85–87. To assess whether a causal estimate may be largely driven by a
single genetic instrument, we conducted leave-one-out analysis. To assess whether
the causal effects of the CpGs at SLC2A9 on serum urate were partly due to GWAS
signals at this locus, we conducted an additional sensitivity analysis excluding
meQTLs with r2 > 0.05 with any of five GWAS index SNPs at SLC2A9 (rs4447862,
rs10017305, rs6825187, rs62286563, and rs73224492) among individuals of EA,
reported in Tin et al.3. The SNP rs4447862 had the lowest p value in the SLC2A9
region, and the other four SNPs were detected as genome-wide significant
independent SNPs by the GCTA stepwise model selection command (cojo-slct)88.
All MR analyses were conducted using the TwoSampleMR package79. Calculations
of the minimum detectable effect size in the forward MR analysis of DNA
methylation on serum urate or gout supported that the MR analysis was well
powered (Supplementary Note 3).

Reverse MR analysis: causal effect of serum urate on DNA methylation. To
evaluate the potential causal effects of serum urate on DNA methylation levels, we
conducted two-sample reverse MR analysis. The genetic instruments for serum
urate were 123 index SNPs from a recent GWAS meta-analysis of 288,649 EA
participants3. The associations between these SNPs and DNA methylation levels
were generated among 3866 EA participants of the Framingham Heart Study, a
sample independent of the EWAS of serum urate89. The ARIC study was not
included in the reverse MR because most meQTL data were from AA participants,
whereas the urate summary statistics were based on data from EA individuals. The
DNA methylation levels were quantified as beta values from the HM450K array.
The analysis of the association between SNPs and DNA methylation levels adjusted
for age, sex, the top 50 methylation PCs, predicted blood cell fractions, and used
linear mixed model to account for family structure. The reverse MR did not use the
GoDMC meQTL results employed in the forward MR analysis, because the
GoDMC meQTL results only contained SNPs associated with DNA methylation
levels below a certain significance level, as reported above. Given that the urate
index SNPs were selected in separate 1-Mb regions across the genome, we did not
conduct GCTA conditional analysis to reassess the independence among these
index SNPs. Otherwise, the selection of the SNPs for serum urate, their harmo-
nization, and MR methods for primary and sensitivity analysis were the same as
those in the forward MR analysis.

Mediation analysis. Given that four CpGs at SLC2A9 showed significant causal
effects for serum urate, we evaluated whether these CpGs may mediate the genetic
effects of the EA index SNPs of serum urate at the SLC2A9 locus3. As reported
previously, four independent SNPs in two neighboring 1 Mb intervals in the
SLC2A9 region were identified based on GCTA stepwise model selection3,81,88.
Mediation analyses of the four CpGs for the four index SNPs were first conducted
among 637 EA ARIC participants, controlling for age, sex, study center, and ten
genetic PCs using the mediation package version 4.5 in R90. This mediation
method uses simulation to estimate the average causal mediation effect in a
potential outcome framework. The significance threshold was set at 0.0125 (0.05/4
independent index SNPs). For the significant index SNP-CpG pairs, mediation
analyses were performed in the SHIP-Trend (n= 223) and KORA (n= 1636)
cohorts. The mediation effects of each CpG were then combined using fixed-effect
inverse-variance meta-analysis as implemented in metafor76.

Association with gene expression and chromatin accessibility. We investigated
the association of the urate-associated CpGs with gene expression in cis in monocytes
and whole blood. Monocyte data were obtained from Kennedy et al., who assessed these
associations among 1202 individuals from the Multi-Ethnic Study of Atherosclerosis27.

DNA methylation levels were quantified using the HM450K array, and gene expression
levels were quantified using Illumina HumanHT-12 version 3.0 and 4.0 Expression
BeadChips. The regression analysis used log-transformed expression levels as the
dependent variable and DNA methylation beta values as the independent variable
controlling for age, race, sex, and study site.

The association of DNA methylation levels with gene expression in whole blood
was obtained from 713 participants of the KORA study. The DNA methylation
levels were quantified using the HM450K array, and gene expression levels were
quantified using Illumina HumanHT-12 v3 Expression BeadChips. The log2-
transformed gene expression values were regressed on the DNA methylation beta
values adjusted for sex and age. Prior to the analysis the technical factors as well as
the blood cell type proportions were regressed out of the mRNA and DNA
methylation levels, and their residuals were included in the final association model.
Statistical significance for the association between urate-associated CpGs and gene
expression was defined as p < 5E–4 (=0.05/99).

To evaluate whether urate-associated CpGs at SLC2A9 might be associated with
gene expression in the kidney, we selected five CpGs at the SLC2A9 locus that were
significantly associated with SLC2A9 gene expression in monocytes (cg03725404,
cg20479063, cg02734326, cg00071950, cg11266682). The DNA methylation and gene
expression levels were quantified from tubulo-interstitial kidney tissue of 314 persons.
The analysis used gene expression (transcripts per million) as the dependent variable
and DNA methylation beta values as the independent variable controlling for age, sex,
five genetic PCs, prevalent diabetes and hypertension, BMI, batch factors, bisulfite
conversion rate, RNA-sequencing batch, and RNA integrity number.

To explore the epigenetic and gene expression landscape in the SLC2A9 locus in
kidney tissues, we looked up the DNA methylation profiles detected by WGBS and
gene expression profiles from RNA-sequencing in five human normal kidneys
(GEO accession GSE115098)91. The methylation beta values from WGBS and read
counts from RNA-sequencing at the SLC2A9 locus (GRCh37/hg19, chr4:9884000-
10067000) were converted to bigwig format. The bigwig files were imported into
IGV genome browser for visualization. In addition, we investigated whether the
urate-associated CpGs at SLC2A9 might be mapped into open chromatin regions in
the kidney using data generated from ATAC-seq (Assay for Transposase-
Accessible Chromatin using sequencing). Kidney cortex and medulla tissues were
macro-dissected from uninvolved portions of tumor nephrectomy specimens and
snap-frozen. ATAC-seq was performed by ActiveMotif (Carlsbad, California) and
the subsequent data were mapped to GRCh38 and normalized by read depth. Peak
calling was performed using MACS 2.1.0 and filtered against the ENCODE
blacklist. Master list generation and set operations with the resulting bed files were
performed using bedops. GRCh38 positions were mapped back to GRCh37/hg19
using the online liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver)

Differential gene expression in humanized mouse model of hyperuricemia. To
investigate whether the closest genes of the urate-associated CpGs might be dif-
ferentially expressed in hyperuricemic condition, we obtained gene expression data
from a humanized mouse model of hyperuricemia. The orthologous mouse variant
to the human ABCG2 Q141K (ABCG2 Q140K) was knocked in to the endogenous
Abcg2 locus using CRISPR/Cas9 on a C57BL/6J background, resulting in hyper-
uricemia in adult male Q140K+/+ mice as described previously64. Animal studies
were performed in adherence to the NIH Guide for the Care and Use of Laboratory
Animals and approved by the University of Maryland School of Medicine Insti-
tutional Animal Care and Use Committee. Mice were housed in groups of two to
five per cage on a 12:12 h light/dark cycle; with lights on at 6 a.m., only male mice
were used for the analysis. Animal organs were harvested and preserved in
RNALater (Sigma R0901) and gradually cooled from 4 °C to −80 °C. RNA was
isolated using the RNeasy Plus Mini Kit (Qiagen 74134) per the manufacturer’s
protocol. RNA was suspended in molecular biology grade water and then quan-
tified with a CLARIOstar plate reader and stored at −80 °C. Illumina Sequencing
Libraries were prepared using manufacturer’s protocol for NEB Ultra II Directional
RNA Library Prep kit with poly-A enrichment (NEB E7760). Samples were
sequenced on four flowcell lanes of an Illumina HiSeq4000 75 bp paired end run.
Five samples were sequenced in each flowcell lane. Samples were grouped per lane
by tissue type. Sample quality assessment, RNA-Seq library preparation, and
sequencing were performed by the Genomics Resource Center at the University of
Maryland School of Medicine. RNA-Seq data was stored and analyzed on BasePair
(https://app.basepairtech.com/) for expression count (STAR) and differential
expression (DESeq2) analyses. Mouse gene names were mapped to human gene
names in HUGO Gene Nomenclature using the Mouse Genome Informatics
database. FDR for differential expression was calculated using the
Benjamini–Hochberg method. We consider FDR < 0.05 as being significant.

Enrichment analyses. To inform the potential functional effects of the urate-
associated CpGs, we assessed the enrichment of these CpGs in sites of DNase I or
histone modification (H3K4me1, H3K4me3, H3K9me3, H3K27me3), gene sets
based on GO terms and pathways in the KEGG and Reactome databases92–95. The
enrichment analyses of DNase I or histone modification were performed using a
local version of eForge version 2.0 (experimentally derived Functional element
Overlap analysis of ReGions from EWAS)96. Briefly, eForge used date sources from
either the ENCODE (125 samples) or Roadmap Epigenomics (299 samples) pro-
jects generated by the Hotspot method97–99. The overlaps between the input CpGs
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and the data sources were compared with those from 1000 random sets of CpGs
with matching gene relationship and CpG island annotation. FDR was obtained
based on the binomial distribution and the Benjamini–Yekutieli method for
multiple testing correction. Our input included 1018 urate-associated CpGs with
p < 1E–05 in the combined meta-analysis of the discovery and replication cohorts.
We performed 10,000 resampling runs with an active proximity filter and con-
sidered FDR < 0.01 as significant, i.e., enrichment >99 percentile.

Enrichment in gene sets or pathways was performed using the methylGSA
package and R version 3.6.1100. The enrichment test method (methylglm) was a
functional class scoring method implemented using logistic regression accounting
for the number of CpG sites per gene and the autosomal background that overlaps
the HM450K and EPIC arrays. Gene sets or pathways with 100–500 genes were
tested (default setting). We considered a gene set or pathway to be significantly
enriched at FDR < 0.05 correcting for multiple testing within each database using
the Benjamini and Hochberg method101.

Relationship of urate-associated CpGs with cardiometabolic traits. Our prior
work on the genetics of serum urate revealed significant genetic correlations
between serum urate and many cardiometabolic traits and showed that genes
mapping into urate-associated loci were highly enriched for expression in kidney
and liver3. Other than gout, cardiometabolic traits with high genetic correlations
(r2 > 0.35) included triglycerides, HDL cholesterol, diabetes, fasting insulin,
hypertension, and BMI. To gain insights on whether these relationships were also
observed when studying DNA methylation in blood, we investigated whether the
urate-associated CpGs were also identified in EWAS of the respective cardiome-
tabolic traits as well as in EWAS of eGFR and liver enzymes. We also included
CRP, given that CRP is a marker of inflammation, a component of metabolic
syndrome38. When more than one EWAS were available for a trait, EWAS were
prioritized for the larger sample size. The primary focus was placed on the inter-
pretation of the direction of association of DNA methylation with serum urate and
the other traits. The CpGs included in the lookup were those replicated in the
EWAS of urate and also considered significant in the EWAS of the other traits
based on criteria of the respective study (Supplementary Data 19). All studies
included in this lookup controlled for age, sex, and white blood cell type propor-
tions for detecting independent association between DNA methylation and the
trait. More details are provided in Supplementary Data 19. When a study included
replication and provided meta-analysis results of discovery and replication, the
effects from the meta-analysis combining discovery and replication were used.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Disclaimer. The views expressed in this manuscript are those of the authors and do
not necessarily represent the views of the National Heart, Lung, and Blood Insti-
tute, the National Institutes of Health, or the US Department of Health and Human
Services.

Data availability
The summary statistics from the meta-analysis are available from the CKDGen
Consortium website (https://ckdgen.imbi.uni-freiburg.de). Additional data and
programming code that support the findings of this study such as code used to call on
software are available from the authors upon request.

Code availability
The script for generating the phenotypes used in the EWAS is available via GitHub
(https://github.com/genepi-freiburg/ckdgen-pheno-ewas)102. EWAS QC, meta-analysis,
and postprocessing were implemented in R v4.0.1 using metafor v2.4.0, qqman v0.1.4,
limma v3.42.2, openxlsx v4.1.5, car v3.0.8, bacon v1.16.0, mutoss v0.1.12, methylGSA
v1.6.1, ggplot2 v3.3.3, SeSAMe v1.10.5, rmeta v3.0, mediation v4.5.0, TwoSampleMR R
v0.5.6, and Genome-wide Complex Trait Analysis (GCTA) v1.93.2beta.
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