15 research outputs found

    Influence of allochtonous nutrients delivered by colonial seabirds on soil collembolan communities on Spitsbergen

    Get PDF
    Despite a widespread recognition of the role of seabird colonies in the fertilization of nutrient-poor polar terrestrial ecosystems, qualitative and quantitative data documenting any consequential influence on soil invertebrate communities are still lacking. Therefore, we studied community structure and abundance of springtails (Collembola) in ornithogenic tundra near two large seabird colonies in Hornsund, south-west Spitsbergen. We found considerably (5–20×) higher densities and biomass of Collembola in the vicinities of both colonies (the effect extending up to ca. 50 m from the colony edge) than in comparable control areas of tundra not influenced by allochtonous nutrient input. The most common springtails observed in the seabird-influenced areas were Folsomia quadrioculata, Hypogastrura viatica and Megaphorura arctica. The latter species appeared the most resistant to ornithogenic nutrient input and was found commonly closest to the bird colonies. Collembolan abundance decreased with increasing distance from the seabird colonies. However, relationships between collembolan density and specific physicochemical soil parameters and vegetation characteristics were weak. The most important factors were the cover of the nitrophilous green alga Prasiola crispa, total plant biomass and soil solution conductivity, all of which were correlated with distance from the colony and estimated amount by guano deposition. Community composition and abundance of springtails showed no evidence of being influenced of seabird diet, with no differences apparent between communities found in ornithogenic tundra developing in the vicinity of planktivorous and piscivorous seabird colonies. The study provides confirmation of the influence of marine nutrient input by seabirds on soil microfaunal communities

    Seabird colony effects on soil properties and vegetation zonation patterns on King George Island, Maritime Antarctic

    Get PDF
    Seabirds are among the most important vectors transferring biogenic compounds from the sea onto land in the polar regions and, consequently, influencing the properties of soil and vegetation. We studied the influence of bird colonies (Adélie penguin Pygoscelis adeliae, gentoo penguin P. papua and giant petrels Macronectes giganteus) on soil properties and plant communities on King George Island, Maritime Antarctic. We designated seven transects, each starting from the colony edge and running to a natural boundary feature, which were divided into contiguous sample plots where we identified specific plant taxa (Prasiola crispa, Deschampsia antarctica, Colobanthus quitensis, Usnea sp.), as well as hydrophilous and xerophilous ecological groups of mosses. Based on percentage contributions of each of these taxa, we distinguished six distinct vegetation zones along the transects, in which we measured physical (moisture, conductivity and pH) and chemical (NO3 −, NO2 −, NH4 +, K+ and PO4 3− content) soil parameters. Our study confirmed that, with increasing distance from bird colonies, the concentration of nutrients and soil conductivity decreased, while pH increased. The vegetation zones were clearly related to this gradient of seabird colony influence and occurred in the same sequence for all three bird species examined, although the largest colony of Adélie penguins had the strongest effect on vegetation. Similarly, the physical and chemical soil properties did not differ significantly between the colonie

    Is ornithogenic fertilisation important for collembolan communities in Arctic terrestrial ecosystems?

    Get PDF
    In the Arctic, areas close to seabird colonies are often characterized by exceptionally rich vegetation communities linked with the high nutrient subsidies transported by seabirds from the marine environment to the land. These areas also support soil invertebrate communities of which springtails (Collembola) often represent the most abundant and diverse group. Our study focused on springtail community composition in the vicinity of seabird (little auk, great skua and glaucous gull) nesting areas in different parts of Svalbard (Magdalenefjorden, Isfjorden and Bjørnøya), and on their comparison with adjacent areas not impacted by seabirds. Out of a total of 35 springtail species recorded, seven were found only within the ornithogenically influenced sites. Although geographical location was the strongest factor differentiating these springtail communities, ornithogenic influence was also significant regardless of the location. When each location was considered separately, seabirds were responsible for a relatively small but strongly significant proportion (8.6, 5.2 and 3.9%, respectively, for each site) of total springtail community variability. Species whose occurrence was positively correlated with seabird presence were Folsomia coeruleogrisea, Friesea quinquespinosa, Lepidocyrtus lignorum and Oligaphorura groenlandica near Magdalenefjorden, Arrhopalites principalis, Folsomia bisetosella and Protaphorura macfadyeni in Isfjorden, and Folsomia quadrioculata on Bjørnøya

    Genome-Wide Analysis Reveals a Major Role in Cell Fate Maintenance and an Unexpected Role in Endoreduplication for the Drosophila FoxA Gene Fork Head

    Get PDF
    Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA family transcription factors are essential for various aspects of organogenesis in all animals that have been studied. Here, we explore the role of the single Drosophila FoxA protein Fork head (Fkh) in salivary gland organogenesis using two genome-wide strategies. A large-scale in situ hybridization analysis reveals a major role for Fkh in maintaining the salivary gland fate decision and controlling salivary gland physiological activity, in addition to its previously known roles in morphogenesis and survival. The majority of salivary gland genes (59%) are affected by fkh loss, mainly at later stages of salivary gland development. We show that global expression of Fkh cannot drive ectopic salivary gland formation. Thus, unlike the worm FoxA protein PHA-4, Fkh does not function to specify cell fate. In addition, Fkh only indirectly regulates many salivary gland genes, which is also distinct from the role of PHA-4 in organogenesis. Our microarray analyses reveal unexpected roles for Fkh in blocking terminal differentiation and in endoreduplication in the salivary gland and in other Fkh-expressing embryonic tissues. Overall, this study demonstrates an important role for Fkh in determining how an organ preserves its identity throughout development and provides an alternative paradigm for how FoxA proteins function in organogenesis

    The Barents and Chukchi Seas: Comparison of two Arctic shelf ecosystems

    Full text link
    This paper compares and contrasts the ecosystems of the Barents and Chukchi Seas. Despite their similarity in a number of features, the Barents Sea supports a vast biomass of commercially important fish, but the Chukchi does not. Here we examine a number of aspects of these two seas to ascertain how they are similar and how they differ. We then indentify processes and mechanisms that may be responsible for their similarities and differences.Both the Barents and Chukchi Seas are high latitude, seasonally ice covered, Arctic shelf-seas. Both have strongly advective regimes, and receive water from the south. Water entering the Barents comes from the deep, ice-free and "warm" Norwegian Sea, and contains not only heat, but also a rich supply of zooplankton that supports larval fish in spring. In contrast, Bering Sea water entering the Chukchi in spring and early summer is cold. In spring, this Bering Sea water is depleted of large, lipid-rich zooplankton, thus likely resulting in a relatively low availability of zooplankton for fish. Although primary production on average is similar in the two seas, fish biomass density is an order of magnitude greater in the Barents than in the Chukchi Sea. The Barents Sea supports immense fisheries, whereas the Chukchi Sea does not. The density of cetaceans in the Barents Sea is about double that in the Chukchi Sea, as is the density of nesting seabirds, whereas, the density of pinnipeds in the Chukchi is about double that in the Barents Sea. In the Chukchi Sea, export of carbon to the benthos and benthic biomass may be greater. We hypothesize that the difference in fish abundance in the two seas is driven by differences in the heat and plankton advected into them, and the amount of primary production consumed in the upper water column. However, we suggest that the critical difference between the Chukchi and Barents Seas is the pre-cooled water entering the Chukchi Sea from the south. This cold water, and the winter mixing of the Chukchi Sea as it becomes ice covered, result in water temperatures below the physiological limits of the commercially valuable fish that thrive in the southeastern Bering Sea. If climate change warms the Barents Sea, thereby increasing the open water area via reducing ice cover, productivity at most trophic levels is likely to increase. In the Chukchi, warming should also reduce sea ice cover, permitting a longer production season. However, the shallow northern Bering and Chukchi Seas are expected to continue to be ice-covered in winter, so water there will continue to be cold in winter and spring, and is likely to continue to be a barrier to the movement of temperate fish into the Chukchi Sea. Thus, it is unlikely that large populations of boreal fish species will become established in this Arctic marginal sea. © 2012 Elsevier B.V
    corecore