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Abstract

In the Arctic, areas close to seabird colonies are often characterized by excep-

tionally rich vegetation communities linked with the high nutrient subsidies

transported by seabirds from the marine environment to the land. These areas

also support soil invertebrate communities of which springtails (Collembola)

often represent the most abundant and diverse group. Our study focused on

springtail community composition in the vicinity of seabird (little auk, great

skua and glaucous gull) nesting areas in different parts of Svalbard (Magdale-

nefjorden, Isfjorden and Bjørnøya), and on their comparison with adjacent

areas not impacted by seabirds. Out of a total of 35 springtail species recorded,

seven were found only within the ornithogenically influenced sites. Although

geographical location was the strongest factor differentiating these springtail

communities, ornithogenic influence was also significant regardless of the

location. When each location was considered separately, seabirds were respon-

sible for a relatively small but strongly significant proportion (8.6, 5.2 and 3.9%,

respectively, for each site) of total springtail community variability. Species

whose occurrence was positively correlated with seabird presence were Folsomia

coeruleogrisea, Friesea quinquespinosa, Lepidocyrtus lignorum and Oligaphorura

groenlandica near Magdalenefjorden, Arrhopalites principalis, Folsomia bisetosella

and Protaphorura macfadyeni in Isfjorden, and Folsomia quadrioculata on Bjørnøya.

To access the supplementary material for this article, please see

Supplementary files under Article Tools online.

Arctic terrestrial ecosystems are generally regarded as

being relatively simple, species-poor and characterized

by short food chains. Very strong seasonality, a short, cold

growing season, nutrient deficiency, permafrost, scant

liquid water and regular freeze�thaw cycles strongly

restrict primary and secondary production (Ims & Ehrich

2013). Low energy and limited snow- and ice-free land,

the relatively young age of contemporary Arctic terrestrial

ecosystems, and spatial isolation contribute to generally

low species diversity, especially in the case of higher

plants and vertebrate herbivores and predators (Payer et al.

2013). However, spatial heterogeneity in, for instance,

temperature, precipitation, wind exposure, hydrology, geo-

morphology (elevation), proximity to coastlines and soil

chemistry create environmental gradients and complex

mosaics of habitats that may support considerable diver-

sification of communities of smaller organisms such as

invertebrates (Hertzberg et al. 2000; Sinclair & Sjursen

2001; Ims & Ehrich 2013). Even very small patches

of suitable favourable habitats surrounded by a hostile

environment, such as individual Carex tussocks embedded

in cyanobacteria-covered ground (Hertzberg et al. 1994;

Hertzberg et al. 2000; Ims et al. 2004), Azorella cushion

plants on sub-Antarctic Marion Island (Hugo et al. 2004),
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cryoconite holes (De Smet & Van Rompu 1994) and

glacier mice (Coulson & Midgley 2012), may provide

viable habitats for these animals.

Most of the Arctic invertebrate fauna inhabit soil

and soil surface environments, and these organisms can

develop much higher abundance, species diversity and

food web complexity in suitable habitats than any other

non-microbial eukaryotes on the land (Hodkinson &

Coulson 2004; Hodkinson 2013; Coulson et al. 2014).

Springtails (Collembola) are often the most abundant

and diverse group (Bengston et al. 1974; Uvarov &

Byzova 1995; Birkemoe & Leinaas 2000). Although it

is widely assumed that springtails play essential roles in

many key polar ecosystem processes, such as decomposi-

tion, energy flow and nutrient cycling, mainly through

grazing on microorganisms and physical alteration of soil

and litter (Hopkin 1997; Rusek 1998; Bardgett & Chan

1999; Filser 2002), detailed knowledge about the dis-

tribution and autecology of most species is lacking (Hogg

et al. 2006; Hodkinson 2013).

Studies of polar (both Arctic and Antarctic) collembolan

and other invertebrate assemblages over multiple spatial

scales have revealed strong heterogeneity in their dis-

tribution and abundance. Between different geographical

regions this may be driven by environmental conditions

such as temperature and moisture associated with climate

(Babenko 2000; Bokhorst et al. 2008), as well as historical

dispersal and colonization processes (Ávila-Jiménez &

Coulson 2011). In the typical mosaic of High Arctic

terrestrial habitats, microtopography and habitat moist-

ure, temperature and habitat quality parameters such as

physico-chemical properties of substrate, decomposition

rate and food availability affect the invertebrate commu-

nities at the scale of meters (Usher & Booth 1986; Dollery

et al. 2006; Caruso & Bargagli 2007; Zmudczyńska et al.

2012; Hodkinson 2013). The size and isolation of habitat

patches and especially their plant species composition

may further contribute to the variability of springtail

assemblages (Hertzberg et al. 1994; Hertzberg et al. 2000;

Ims et al. 2004). At the scale of centimetres, invertebrates

may be associated with particular plant species and/or

local environmental conditions formed beneath them

(Coulson et al. 1993; Block & Convey 1995; Coulson

et al. 2003; Gwiazdowicz & Coulson 2011). Finally, even

within relatively homogeneous habitat, clustering of inver-

tebrates may be also explained by inter-species relation-

ships (Usher & Booth 1986; Caruso et al. 2007; Caruso

et al. 2013), pheromone-induced aggregation (Leinaas

1983; Usher & Booth 1984, 1986; Benoit et al. 2009), and

past stochastic events causing uneven mortality or other

demographic phenomena (Coulson et al. 2000; Chown &

Convey 2007).

Within the patchy High Arctic terrestrial ecosystem,

particularly favourable habitats for many organisms are

found in the vicinity of seabird nesting sites, especially

the larger bird colonies which may consist of several

hundred thousand individuals (Lindeboom 1984; Odasz

1994; Stempniewicz et al. 2007). These areas are ferti-

lized by nutrients transported by the birds from the

marine environment and deposited on land in the form

of guano, feathers, egg shells and carcasses (Bokhorst

et al. 2007; Zwolicki et al. 2013). The ornithogenically

subsidized areas support exceptionally lush vegetation

(Zmudczyńska et al. 2008; Zmudczyńska-Skarbek et al.

2013) including specific plant communities (Eurola &

Hakala 1977; Elvebakk 1994; Zmudczyńska et al. 2009),

and populations of herbivores, predators and scavengers

(Croll et al. 2005; Jakubas et al. 2008; Kolb et al. 2011).

Collembola feeding on fresh and dead organic matter

may specifically graze on or accidentally ingest fungi,

algae, bacteria and other microbiota (Hopkin 1997; Rusek

1998; Worland & Lukešová 2000) and may also attain

very high population densities in ornithogenic substrates

around seabird colonies (Coulson et al. 2014). While

the contribution of collembolans to decomposition in

the Arctic terrestrial ecosystem is thought to be vital,

relatively little attention has been given to their role in

ornithogenically influenced habitats (see Mulder et al.

2011). Byzova et al. (1995) reported extremely high den-

sity and biomass of springtails in the vicinity of a little auk

(Alle alle) colony in Hornsund (south-west Spitsbergen),

reaching more than 105 ind. and 5 g m�2, these values

being higher than reported either in most non-influenced

ecosystems or in nutrient-enriched manure heaps. We

have also reported similar values both associated with

little auks and below a nearby cliff-nesting colony of

Brunnich’s guillemots (Uria lomvia) and kittiwakes (Rissa

tridactyla) (Zmudczyńska et al. 2012). High springtail

density has also been noted from seabird-influenced

sites in another west Spitsbergen fjord, Kongsfjorden

(Bengston et al. 1974; Sømme & Birkemoe 1999), and

on Nordaustlandet, the northern-most island of the

Svalbard Archipelago (Fjellberg 1997). Sømme & Birkemoe

(1999) and Zmudczyńska et al. (2012) described gradual

changes in collembolan community composition with dis-

tance from seabird colonies. Specific communities have

also been described in areas experiencing the most inten-

sive ornithogenic manuring, with few species strongly

represented, including Megaphorura (formerly Onychiurus)

arctica, Hypogastrura viatica, Folsomia quadrioculata and

Xenylla humicola (Hodkinson et al. 1994; Uvarov &

Byzova 1995; Fjellberg 1997; Sømme & Birkemoe 1999;

Zmudczyńska et al. 2012).
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Most studies to date have focused on single seabird

colonies and locations, and addressed basic parameters of

springtail community description, such as overall species

richness, density and biomass of Collembola as a whole,

or only focusing on the most abundant species. In

a previous study of two seabird colonies at Hornsund,

we identified significant correlations between springtail

density and soil physical and chemical properties, and

vegetation biomass (Zmudczyńska et al. 2012). Factors

significantly influencing the springtail community in

that study included the cover of green nitrophilous alga

Prasiola crispa (explaining 11% of the total springtail vari-

ability), total plant biomass (9%) and soil conductivity

(6%). These factors were all clearly associated with dis-

tance from the seabird colonies and guano deposition

(see also Zwolicki et al. 2013).

In the current study, we used multivariate analytical

techniques to generate quantitative estimates of, first, the

proportion of total variability in the Collembola commu-

nity explained by seabird influence. To our knowledge,

this question has not previously been tested, and multi-

variate (ordination) approaches have rarely been applied

in the study of ornithogenic impact on invertebrate

assemblages worldwide (but see Orgeas et al. 2003; Towns

et al. 2009; Kolb et al. 2012; Zmudczyńska et al. 2012).

Second, this approach will permit the identification of

springtail species that are specifically linked with seabird-

mediated changes in the environment. We analysed

collembolan communities collected over a much wider

geographical scale than has been achieved previously,

ranging from the relatively small island of Bjørnøya

(748N), which is the southernmost island of Svalbard, to

the second largest Spitsbergen fjord Isfjorden located in

the centre and mildest part of the island (788N), to the

northern-most west Spitsbergen coast close to Magdale-

nefjorden (798N). We obtained samples from six seabird

nesting sites and respective control areas. This coverage

also enabled us to assess the role of geographical location

within the archipelago in explaining variability between

the springtail communities found. Finally, as other studies

have related the occurrence of Collembola and vegetation

communities/species (Hertzberg et al. 1994; Coulson et al.

2003; Ims et al. 2004), we evaluated the strength of this

relationship in the vicinity of seabird colonies.

Materials and methods

Study area

The study was conducted at three locations within the

Svalbard Archipelago, one on Bjørnøya (Bear Island) and

two on Spitsbergen (Fig. 1). Within all sampling plots we

identified vascular plant species and visually (using a

plot-sized quadrat subdivided into 20�20 cm units)

estimated the individual species and total moss percen-

tage contributions to vegetation cover.

Bjørnøya (Bjo). This is the southernmost island (176 km2)

of the archipelago, midway between the Norwegian

mainland and Spitsbergen. Three sites in the vicinity

of different seabird species nesting areas, together with

respective control sites, were sampled. Site B-A (74838?N
19803?E) was close to a relatively large colony of the

planktivorous little auk situated on a gentle slope on

Alfredfjellet, exposed to the north and descending to

Lake Ellasjøen. The upper part of the site consisted of

vegetation-covered rock debris, while the lower part ap-

proaching the lake shore was flat and waterlogged.

Vegetation cover was complete in both parts of the area.

Vegetation consisted of vascular plants, mainly Salix sp.

and Saxifragaceae (and Equisetum arvense in the water-

logged area), interspersed with compact moss carpets and

clumps. Site B-Ac was the control site for B-A, located on

Alfredfjellet and parallel to B-A but ca. 500 m from the

colony and separated from it by a seasonal stream. Similar

plant species to site B-A were present, but the total cover

of vegetation was around 20% (see above for method of

estimation). Site B-L (74847?N 18878?E) was located in the

north-west, flat part of the island, close to the cliff edge

Fig. 1 Study area locations within the Svalbard Archipelago.
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and to a concentration of nests of the predatory (feeding

on fish, large pelagic invertebrates and other seabirds)

glaucous gull (Larus hyperboreus), with patches of dense

vegetation surrounding each nest. Vascular plants were

usually underlain by a dense moss layer (80% moss cover

on average), and were dominated by Festuca cf. rubra

subsp. arctica (up to 100%), with less than 10% admixture

of Oxyria digyna, Saxifraga caespitosa and Draba sp. Site B-S

(74847?N 18876?E) was located inland from B-L, in close

proximity to nests of the predatory (feeding on fish and

other seabirds) great skua (Stercorarius skua). Vegetation

was similar to that of B-L, but F. cf. rubra subsp. arctica was

less abundant (on average 70% cover), with a generally

more species rich herb/shrub flora, and more abundant

mosses (90%) present. In addition to the species listed

above, Salix sp., Cerastium sp. and other Saxifragaceae

were present (up to 80, 20, and B1% cover, respectively).

Sites B-Lc and B-Sc were the control sites for B-L and B-S,

respectively, and were situated beyond the dense vegeta-

tion patches surrounding individual nests, on average 3 m

from the relevant nest sites. Total vegetation cover values

(B-Lc: 90%, B-Sc: 10%), and especially those of vascular

plant species (B-Lc: 10%, B-Sc: 3%), were lower than

those of the respective nest sites.

Isfjorden (Isf). Site I-A (78824?N 15834?E) was close to

a medium-sized little auk colony in Bjørndalen, on the

western slope of Platåberget. Vegetation consisted of a

mixed community of mosses (on average 40% cover) and

vascular plants (35%), with a considerable proportion

of Salix polaris (up to 50%, average 25%) and small admix-

tures of species such as Poa alpina var. vivipara, Cerastium

arcticum, Trisetum arvense, O. digyna and Saxifragacae. Site

I-Ac was the control site located parallel to I-A but ca.

1 km from the colony. Vegetation was similar to that of

I-A, but mosses were more abundant (on average 55%)

with vascular plants including T. arvense, O. digyna and

P. alpina var. vivipara correspondingly lower (20%).

Magdalenefjorden (Mag). The sites M-A1 and M-A2

(79852?N 10870?E) were situated on the talus slope of

Aasefjellet, exposed to the west and descending to the

open sea, adjacent to very large little auk colonies. The

vascular plant layer was underlain by dense moss, giving

up to 95% cover, and mostly consisted of C. arcticum,

P. alpina var. vivipara and C. groenlandica. Site M-Ac, the

control site for both M-A1 and M-A2, was located on

Aasefjellet (ca. 700 m and 500 m from M-A1 and M-A2,

respectively), facing north and descending to Hamburg-

bukta. Boulders that were not overgrown with vegetation

composed a significant proportion of this area (up to 60%

in some plots), with the remaining area predominantly

covered by mosses.

Sampling protocol

The study was conducted in the summer months of

July and August, during expeditions to Bjørnøya (2008),

Magdalenefjorden (2009) and Isfjorden (2010). Around

little auk colonies, samples were collected along line

transects down the slopes below the seabird colonies

(sites: B-A, I-A, M-A1 and M-A2), and in their respective

control sites (B-Ac, I-Ac, and M-Ac). Each transect con-

sisted of 5�9 plots (160�160 cm each) that were located

from the transect’s starting point (plot 1) as follows: plot 2

(6 m), 3 (15 m), 4 (29 m), 5 (49 m), 6 (79 m), 7 (125 m),

8 (193 m) and 9 (296 m), as described by Zmudczynska

et al. (2012). Due to practical logistic limitations, on

transects B-A and B-Ac every second plot was sampled

(plots 1, 3, 5, 7 and 9). We collected three soil cores

(together with vegetation cover, see below) from three

sites along the same diagonal of each sampling plot (from

the centre and the two corners of each square) (Table 1).

Table 1 Study areas and sampling pattern.

Area/locality Seabird species Colony size/type Site N plots N samples

Bjørnøya 97 117

Ellasjøen (Alfredfjellet) Little auk large B-A 5 15

control B-Ac 5 15

North-west Bjørnøya Glaucous gull individual nests B-L 10 10

control B-Lc 5 5

North-west Bjørnøya Great skua individual nests B-S 48 48

control B-Sc 24 24

Isfjorden 18 54

Bjørndalen (Platåberget) Little auk medium-sized I-A 9 27

control I-Ac 9 27

Magdalenefjorden 25 75

Hamburgbukta (Aasefjellet) Little auk very large M-A1 9 27

Little auk very large M-A2 9 27

control M-Ac 7 21
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In the cases of great skua and glaucous gull nesting

sites located on flat ground, three plots (100�100 cm

each) were sampled in the vicinity of each nest: (plot 1)

with a nest situated in the centre, (2) adjoining plot 1, still

within the patch of dense vegetation surrounding the nest

(both plots included in sites B-L and B-S), and (3) beyond

the boundary of the compact vegetation patches, 3 m on

average from the nest (sites B-Lc and B-Sc, respectively).

We collected one soil core from the centre of each plot,

except in plot 1 where the sample was taken adjacent to

the nest (Table 1). Nests containing eggs or chicks were

not sampled. Sampled nests had been recently occupied

as evidenced by the presence of down and other nest

material, and food scraps, but we cannot be fully certain

that they had been occupied in that year’s summer season.

Samples were taken with a cylindrical probe (diameter

6 cm) from the soil surface (mainly organic) layer, and

included the vegetation covering the area and the under-

lying soil to a depth of ca. 5 cm. Each sample was sealed

in a plastic container and, within a few hours, returned

to the laboratory where it was subsequently placed for

48 h in a modified Tullgren apparatus illuminated with

60W bulbs (Barton 1995). Extracted springtails were pre-

served in 96% ethanol and identified to species level

following Fjellberg (1998, 2007). We calculated frequen-

cies of occurrence (%) and densities of particular species

(number of individuals per m2). For cores obtained from

the 160�160 cm plots, total springtail species counts for

each plot (i.e., the sum of the three samples obtained)

were analysed.

Statistical analyses

To test for differences in the springtail species richness be-

tween the study areas the non-parametric Mann-Whitney

U-test was used on account of the non-normal distribu-

tions of data and a relatively low number of sampling plots

per group tested. Data were processed using STATISTICA

10.0 (StatSoft, Inc. 2011).

Numerical ordination methods were used to describe

total (qualitative and quantitative) variability of spring-

tail communities and vegetation: (1) independently of

any environmental influence (unimodal indirect gradient

analysis: detrended correspondence analysis [DCA]), to

describe the general pattern of variability in the studied

community; and (2) in relation to environmental vari-

ables (unimodal direct gradient analysis: canonical corre-

spondence analysis [CCA]). Two nominal environmental

factors were tested: AREA, determining the geographical

location (Bjo, Isf or Mag), and SEABIRD, representing

the presence (Seabird) or absence (Control) of a seabird

colony in the vicinity of sampling sites. All species data

were log-transformed to normalize their distributions.

After CCA, a Monte Carlo permutation test was performed

(with 499 permutations) to identify which of the fac-

tors significantly influenced the model. To calculate the

factors’ unique contribution to explaining variability in

the springtail species composition we used variation parti-

tioning test (ter Braak & Šmilauer 2012). To provide more

accurate estimation of variation explained with canonical

(CCA) analyses, we adjusted the variation value using

the number of degrees of freedom as suggested by Peres-

Neto et al. (2006). Each time the results of constrained

ordination were compared with those of unconstrained

ordination (% variability explained by an environmental

factor was divided by % variability explained by one (in

the case of SEABIRD) or two (AREA) axes of the uncon-

strained analysis). Thus we obtained the efficiency of the

environmental factor(s) (%) in explaining the total vari-

ability present in the data (ter Braak & Šmilauer 2012). In

order to relate ordinations based on springtail community

composition with those of vegetation composition, we

used co-correspondence analysis (CoCA; ter Braak &

Šmilauer 2012). To explore significant relationships be-

tween individual springtail species and the environmental

factor SEABIRD we employed t-value biplots (Van Dobben

circles) that approximated the t-values of the regression

coefficients of a weighted multiple regression (ter Braak &

Šmilauer 2012). Data were processed using CANOCO 5.0

software (ter Braak & Šmilauer 2012).

Results

Within the total of 140 plots (246 samples) studied, we

recorded 35 springtail species: 17 on Bjørnøya, 21 in

Isfjorden and 30 in Magdalenefjorden (Table 2, Supple-

mentary Table S1). The average numbers of species were

similar across SEABIRD and CONTROL sites in all plots taken

together and in each location, except for Magdalenefjor-

den where it was higher in M-A1 than in M-Ac (Mann-

Whitney test, U�3.00, p�0.003). However, in total,

more species occurred within SEABIRD sites versus their

respective CONTROL sites in the case of three little auk

colonies: I-A (20) versus I-Ac (18), and M-A1 (18) and M-

A2 (23) versus M-Ac (14); and in the case of the great skua

nesting area: B-S (12) versus B-Sc (eight). On Bjørnøya,

the same number of species was noted close to the little

auk colony and within its CONTROL site (seven in both

B-A and B-Ac), while the number was lower in B-L (seven)

than in B-Lc (nine) adjacent to glaucous gull nests. Seven

species occurred only within SEABIRD sites: Arrhopalites

principalis (B-A, I-A, M-A1), Ceratophysella longispina (M-

A2), C. succinea (B-S, M-A2), Desoria neglecta (M-A1),

Mesaphorura macrochaeta (I-A), Pseudanuphorus alticola
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(M-A2) and Sphaeridia pumilis (M-A1) (Supplementary

Table S1). Two species were recorded only on CONTROL

sites: Agrenia bidenticulata (M-Ac) and Thalassaphorura

duplopunctata (B-Ac) (Supplementary Table S1).

Almost 20% of variability in springtail species compo-

sition was explained by two hypothetical gradients (un-

constrained ordination axes), with 12.1% explained by

axis 1 and 7.7% by axis 2 (DCA, gradient length�4.00

SD; Table 3, Fig. 2a). CCA (constrained ordination)

revealed that the AREA factor (Bjo, Isf, Mag) was respon-

sible for 13.4% of the total collembolan variability, while

the SEABIRD factor (Seabird, Control) accounted for 2.1%

(Fig. 3). These factors therefore contributed 67.7% (AREA)

and 17.4% (SEABIRD) of the variation explained by the

model. The AREA and SEABIRD factors were independent

of each other and did not share the explained variation

(variation partitioning test, F�8.8, p�0.002).

The areas studied were distinct with respect to their

vegetation composition. The plots from different areas

formed distinct groups in the unconstrained ordination

(DCA) space based on plant species and moss abundances

recorded (Fig. 2b). The AREA factor explained 19.3% of

the total vegetation variability, equating to 83.0% of

the variation described with DCA (axis 1: 15.3%, axis 2:

8.0%, gradient length�2.58 SD). The variabilities of

springtail and vegetation communities were not signifi-

cantly correlated (CoCA, p�0.05). Because of the clear

differentiation of the three localities (both with respect to

collembolan and vegetation diversity, as well as in terms

of geographical distance), in subsequent analyses each

area was treated separately. Neither springtail nor vege-

tation variability were significantly co-correlated within

any of the individual areas studied (CoCA, p�0.05).

On Bjørnøya, the SEABIRD factor was responsible for

3.9% of the total springtail variability, constituting 30.7%

of the variability identified by the theoretical uncon-

strained analysis (Table 3). Of the collembolan species best

fitted to the first CCA axis (equivalent to the SEABIRD

factor; the species shown in Fig. 4a), Folsomia quadrioculata

was significantly positively associated with this ex-

planatory variable while four other species*Desoria

tshernovi, Hypogastrura viatica, Tetracanthella arctica and

Thalassaphorura duplopunctata*were associated nega-

tively (species selected using Van Dobben circles; Table 4).

In Isfjorden, the proportion of variation in collembolan

community composition that was influenced by seabird

presence was 5.2%, equating to 24.6% of the available

variation (Table 3). Three species were positively related to

seabird impact*Arrhopalites principalis, Folsomia bisetosella

and Protaphorura macfadyeni*and two species related to it

negatively Lepidocyrtus lignorum and Parisotoma notabilis:

(Fig. 4b, Table 4). In Magdalenefjorden, seabird influence

accounted for 8.6% of the total springtail variability, or

44.8% of the total available (Table 3). Here, four species

reacted positively to seabird impact: Folsomia coeruleogrisea,

Friesea quinquespinosa, Oligaphorura groenlandica and L.

lignorum (which responded negatively in Isfjorden).

Among six species that were negatively associated with

Table 2 Number of species recorded in each site and area of the current study, and summed up for the SEABIRD and CONTROL sites.

Area
Bjørnøya Isfjorden Magdalenefjorden

Site B-A B-Ac B-L B-Lc B-S B-Sc I-A I-Ac M-A1 M-A2 M-Ac

No. of species per site 7 7 7 9 12 8 20 18 18 23 14

No. of species found only in SEABIRD 3 1 5 3 6 11

No. of species found only in CONTROL 3 3 1 1 2

No. of species common for SEABIRD and CONTROL 4 6 7 17 12

No. of species per area 17 21 30

Table 3 Percent of variability in vegetation and collembolan communities explained by hypothetical gradients (axes 1 and 2; detrended

correspondence analysis [DCA]) and environmental factors (AREA and SEABIRD; canonical correspondence analysis [CCA]), with the explaining efficiency

of the factors (factors’ contribution to the variation explained by the axes).

Variability explained (%)

Area DCA axis 1 DCA axis 2 Environmental factor (CCA) F p Efficiency (%)

Vegetation

All areas 15.3 8.0 AREA: 19.3 17.7 0.002 83.0

Collembola

All areas 12.1 7.7 AREA: 13.4 10.8 0.002 67.7

SEABIRD: 2.1 3.7 0.002 17.4

Bjørnøya 12.7 � SEABIRD: 3.9 4.4 0.002 30.7

Isfjorden 21.1 � SEABIRD: 5.2 1.9 0.008 24.6

Magdalenefjorden 19.2 � SEABIRD: 8.6 4.4 0.002 44.8
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seabirds in Magdalenefjorden was F. quadrioculata deter-

mined as positive in Bjørnøya (Fig. 4c, Table 4). The

relationships with seabird influence were still present for

nine species (five positive and four negative) when all the

areas were analysed together (Table 4).

Discussion

Although the key role of colonial seabirds in the enrich-

ment of the otherwise poor Arctic terrestrial ecosystem

is relatively well recognized, data on soil invertebrate

assemblages inhabiting ornithogenically modified areas

are still sporadic. The six previous studies that we are

aware of listed species occurring close to rich seabird nes-

ting sites along with, at most, data on overall Collembola

density and biomass (Bengston et al. 1974; Hodkinson

et al. 1994; Byzova et al. 1995; Uvarov & Byzova 1995;

Fjellberg 1997; Sømme & Birkemoe 1999). Our previous

studies at Hornsund have identified some factors signifi-

cantly correlated with springtail abundance and com-

munity composition, including the amount of guano

deposited and soil and vegetation parameters that are

closely associated with bird colony impact (Zmudczyńska

et al. 2012; Zwolicki et al. 2013). The present study is the

first to attempt to estimate quantitatively the proportion

of variation in Arctic Collembola communities explained

by seabird influence, and one of very few that has

addressed this question worldwide (Kolb et al. 2011).

Almost 20% of total variability of springtail species

composition in our data set (comprising 35 species

recorded in 140 sampling plots from different habitats

and geographical regions of the Svalbard Archipelago)

was explained by two hypothetical environmental gra-

dients (unconstrained DCA axes). The most important

factor accounting for this variation (68%) appeared to be

related to geographical location. We sampled three widely

separated parts of the archipelago. At this regionally large

spatial scale the sampling areas differed in exposure to the

marine environment and, in particular, to the influence of

ocean currents and temperatures of the water masses pre-

dominating at each (Loeng & Drinkwater 2007; Saskaug

et al. 2009). For instance, with a mean July temperature

of 5.98C in 1961�1990 (eKlima 2014), Isfjorden is the

warmest part of Svalbard, mostly due to the large inflow

of warm Atlantic water. Bjørnøya, surrounded by cold

Arctic water but also in close proximity to Atlantic water

masses, experiences large amounts of fog and high winds

(Summerhayes & Elton 1923; Saskaug et al. 2009), higher

precipitation (30 mm in July compared to 18 mm in

Isfjorden) and lower summer temperature (4.48C in July),

while being the mildest throughout winter (�8.18C in

January). The key role of geographical factors underlying

Collembola distribution has been emphasized by Caruso

Fig. 2 Detrended correspondence analysis (DCA) ordination of plots classified with respect to (a) springtail species composition and (b) vegetation

composition of the different study areas.
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& Bargagli (2007) and Babenko (2009) in studies sam-

pling different locations across latitudinal gradients in

northern Victoria Land (Antarctica) and on the western

Taimyr Peninsula (Russian Arctic), respectively. Although

these studies did not assess the total species richness in

the study areas, both noted that some species did not

occur at all localities along each transect. Caruso &

Bargagli (2007) demonstrated that variability in springtail

species richness between their study sites was the same

whether considering distance scales of 10 km or 100 m.

DCA ordination of plots in our study revealed a similar

pattern, with some samples from Bjørnøya being more

similar to those from other Svalbard areas than others

within the island itself (Fig. 2a). Furthermore, although

the southernmost and also the most extensively sampled

location (117 samples, in comparison with 54 from Isfjorden

and 75 from Magdalenefjorden), Bjørnøya hosted the

lowest number of springtail species (17 as compared with

21 and 30, respectively). We therefore conclude that the

inter-area distinctions identified from our data do not

represent a latitudinal gradient but, rather, large-scale vari-

ability resulting from a range of factors, including local

climate, historical dispersal and colonization processes

(Babenko 2000; Bokhorst et al. 2008; Ávila-Jiménez &

Coulson 2011; Hodkinson 2013).

Similarly, geographical factors may underlie the dis-

tinctions identified between the study areas in terms of

vegetation community composition, accounting for 83%

of the variation described by DCA. In this case, the length

of the gradient representing beta-diversity (ter Braak &

Šmilauer 2012) was lower (2.6 SD) than that calculated

for Collembola (4 SD) while, as noted above, there was no

correlation apparent between the vegetation and collem-

bolan communities. However, the survey scales also

differed between these two groups, with springtails being

extracted from cores of 6 cm diameter, and vegetation

composition documented in complete 160�160 cm or

100�100 cm plots, areas that are likely to host multiple

Fig. 3 Canonical correspondence analysis (CCA) ordination of springtail species (triangles) with respect to the influence of different areas*Bjørnøya

(Bjo), Isfjorden (Isf) and Magdalenefjorden (Mag)*and the presence (SEABIRD) and absence (CONTROL) of a seabird colony in the vicinity of a sampling

site (diamonds).
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invertebrate microhabitats (Usher & Booth 1986; Caruso

& Bargagli 2007; Hodkinson 2013).

Irrespective of the scale considered and the geographical

influence, our analyses demonstrate that seabirds exerted

significant influence on springtail communities in Svalbard.

Seven of the 35 springtail species recorded were present

only in the seabird-influenced sites. Collembolan com-

munity variability was explained by the SEABIRD factor to a

greater extent when each area was considered separately

than when data from all the areas were combined (Table 3),

probably a consequence of the community composition

differing in detail between the areas. Hence, the springtail

assemblage recorded within any one area contained one

to four species that were positively correlated with the

seabird influence, without the same relationship being

identified in the other study areas. For instance, Folsomia

quadrioculata is recognized as a widely distributed species

in the Arctic and has been considered to have no clear

habitat preferences (Fjellberg 1994), although it has also

been recorded as notably abundant below bird cliffs

(Fjellberg 1997; Sømme & Birkemoe 1999; Zmudczyńska

et al. 2012). In the current study, this species’ presence

was significantly correlated with seabird influence on

Bjørnøya, but negatively correlated in Magdalenefjorden.

Other species positively associated with seabird influence

in analyses of the remaining areas are known for

their occurrence in rich ornithogenic sites, and include

both species characteristic of wet (e.g., Oligaphorura

groenlandica) and dry (e.g., Lepidocyrtus lignorum) habitats

(Fjellberg 1994). Those species for which significant re-

sponses were not necessarily found in ordinations (likely

due to small sample sizes), but were found exclusively

within seabird-influenced sites, were also typical of

eutrophic and usually wet or moist habitats. Two such

Fig. 4 Canonical correspondence analysis (CCA) ordinations of 10 best-fitted species with respect to the SEABIRD factor (axis 1) in each area. Pie slices

based on species percentage occurrence within SEABIRD (black) and CONTROL (white) sites. Boldface indicates species that significantly and positively react

to the SEABIRD explanatory variable (on the basis of t-value biplot).
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species*Sphaeridia pumilis and Pseudanuphorus alticola

(both recorded from Magdalenefjorden)*have pre-

viously been recorded only sporadically from Svalbard,

the former from Kolhamna/Kongsfjorden (Fjellberg 1994)

and Russebukta/Edgeøya (www.artsobservasjoner.no),

and the latter from Jan Mayen (Fjellberg 1994), Kinnvika/

Nordaustlandet (Coulson et al. 2011) and Barentsburg/

Isfjorden (Coulson et al. 2013). Notably, some species

responding negatively in the current study to the seabird

factor (e.g., Parisotoma notabilis, Tetracanthella arctica) or

totally absent from the seabird areas (Thalassaphorura

duplopunctata) have previously been noted in rich (also

ornithogenic), both wet and dry sites (Fjellberg 1998,

2007). This emphasizes the importance of conducting

analyses of the entire springtail community inhabiting an

area rather than focusing on individual species that may

react differently to a given factor when additional envir-

onmental conditions are considered.

A priori, the most obvious potential link by which

seabird influence might interact with collembolan com-

munities would appear to be via the soil and vegetation

developing on rich ornithogenic substrates around nest-

ing sites, both of which clearly differ from those of non-

fertilized areas (Eurola & Hakala 1977; Zwolicki et al.

2013). We have shown previously that the density of all

springtails as well as that of the locally predominating

species (F. quadrioculata and H. viatica) were significantly

though moderately correlated (correlation coefficients

ranging from 0.2 to 0.5) with individual chemical and

physical soil properties (Zmudczyńska et al. 2012). Each of

these factors was strongly correlated to seabird guano

deposition (coefficients of 0.6 to 0.9, Zwolicki et al. 2013),

but only soil conductivity significantly influenced the

Collembola composition. Such evidence supports spring-

tails not being directly dependent on a single factor but

rather influenced by a range of complex environmental

factors. As some studies have identified significantly

distinct microarthropod assemblages associated with par-

ticular plant species/communities and/or the specific

properties of soil forming beneath them (e.g. Coulson

et al. 2003), we hypothesized that a strong relationship

would exist between springtails and vegetation composi-

tion in the studied areas. However, no such correlation

was apparent in our data, even when each study area was

analysed separately. Plants are potentially available for

springtails as food (typically during decay rather than

through active grazing), as well as contributing to the

modification of habitat properties such as soil moisture

and temperature. However, seabirds may alter the quality

and quantity of several different food resources, including

algae, fungi and other microorganisms (Matuła et al.

2007; Wright et al. 2010). For instance, in Hornsund a

green nitrophilous alga species, Prasiola crispa, growing

abundantly below the seabird colonies was significantly

associated with the collembolan community (Zmudczyńska

et al. 2012) and might therefore be an important diet

component there. Moreover, seabirds may affect distribu-

tion and abundance of different invertebrate groups, such

as mites, beetles or dipteran larvae that may compete for

the resources and/or prey on collembolans (Bengston

et al. 1974; Caruso et al. 2013; Basset et al. 2014). Unfor-

tunately, as is often the case in studies of polar terrestrial

ecosystems (Worland & Lukešová 2000; Hogg et al. 2006),

detailed autecological information (including diet studies)

of most of the springtail species reported here is lacking.

The multivariate analyses applied here provided clear

evidence of the significant role that seabird influence

plays for these soil invertebrate communities in the Arctic.

While the explanatory power of the seabird enrichment

was relatively low, the ornithogenic effect was significant

both at the scale of the entire Svalbard Archipelago and

within each specific geographical location. Other factors,

such as small-scale habitat conditions (enhanced by

the typical patchiness of tundra habitats [e.g., Hertzberg

et al. 1994; Ims et al. 2004]), population density fluctua-

tions from year to year (Sømme & Birkemoe 1999), and

natural tendency for aggregation (Leinaas 1983; Usher &

Booth 1984, 1986; Benoit et al. 2009) contribute addi-

tional variation to the Collembola community. Given that

springtails provide key ecosystem services contributing to

organic matter decomposition, energy flow and nutrient

Table 4 Significant positive (�) and negative (�) response of

Collembola species for the SEABIRD factor, chosen on the basis of t-value

biplots made separately for each area: Bjørnøya (Bjo), Isfjorden (Isf),

Magdalenefjorden (Mag) and all the areas together (ALL).

Species Bjo Isf Mag ALL

Agrenia bidenticulata � �
Anurida polaris �
Arrhopalites principalis �
Desoria tshernovi �
Folsomia bisetosella � �
Folsomia coeruleogrisea � �
Folsomia quadrioculata � �
Friesea quinquespinosa � �
Hypogastrura viatica �
Isotoma anglicana �
Lepidocyrtus lignorum � �
Oligaphorura groenlandica � �
Parisotoma notabilis � �
Protaphorura macfadyeni �
Sminthurides malmgreni � �
Sphaeridia pumilis �
Tetracanthella arctica � �
Thalassaphorura duplopunctata �
Xenylla humicola �
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cycling, and considering that these processes, together

with the invertebrate communities and colonial sea-

birds, are expected to be strongly influenced by pre-

dicted climate warming, especially in the polar regions

(Callaghan et al. 2005; Hodkinson 2013; Ims & Ehrich

2013), further studies of Collembola distribution, abun-

dance and functional ecology are required, with these

being planned over appropriate spatial and timescales.
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Zmudczyńska K., Zwolicki A., Barcikowski M., Iliszko L. &

Stempniewicz L. 2008. Variability of individual biomass

and leaf size of Saxifraga nivalis L. along transect between

seabirds colony and seashore in Hornsund, Spitsbergen.

Ecological Questions 9, 37�44.
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