126 research outputs found

    Betontiegelversuche mit Thermitschmelzen

    Get PDF

    Commissioning of the CMS Magnet

    Get PDF
    CMS (Compact Muon Solenoid) is one of the large experiments for the LHC at CERN. The superconducting magnet for CMS has been designed to reach a 4 T field in a free bore of 6 m diameter and 12.5 m length with a stored energy of 2.6 GJ at full current. The flux is returned through a 10 000 t yoke comprising of five wheels and two end caps composed of three disks each. The magnet was designed to be assembled and tested in a surface hall, prior to be lowered at 90 m below ground, to its final position in the experimental cavern. The distinctive feature of the cold mass is the four-layer winding, made from a reinforced and stabilized NbTi conductor. The design and construction was carried out by CMS participating institutes through technical and contractual endeavors. Among them CEA Saclay, INFN Genova, ETH Zurich, Fermilab, ITEP Moscow, University of Wisconsin and CERN. The construction of the CMS Magnet, and of the coil in particular, has been completed last year. The magnet has just been powered to full field achieving electrical commissioning. After a brief reminder of the design and construction the first results of the commissioning are reported in this paper

    Status of the CMS magnet (MT17)

    Get PDF
    The CMS experiment (Compact Muon Solenoid) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with a free bore of 6 m diameter and 12.5-m length, enclosed inside a 10 000-ton return yoke. The magnet will be assembled and tested in a surface hall at Point 5 of the LHC at the beginning of 2004 before being transferred by heavy lifting means to an experimental hall 90 m below ground level. The design and construction of the magnet is a common project of the CMS Collaboration. The task is organized by a CERN based group with strong technical and contractual participation from CEA Saclay, ETH Zurich, Fermilab, INFN Genova, ITEP Moscow, University of Wisconsin and CERN. The magnet project will be described, with emphasis on the present status of the fabrication. (15 refs)

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore