95 research outputs found
Correlation Between Volcanic and Tectonic Segmentation of Fast-Spreading Ridges: Evidence from Volcanic Structures and Lava Flow Morphology on the East Pacific Rise at 9˚-10˚N
Combined analyses of volcanic features in DSL-120 sonar data and Argo I images along the ridge crest of the East Pacific Rise, 9_090–540N reveal a consistent decrease in inferred lava effusion rate toward the ends of third-order segments. The correlation of tectonic segmentation and volcanic style suggests that third-order segmentation corresponds to the volcanic segmentation of the ridge. Along-axis changes in volcanic structures (from collapse troughs to basaltic lava domes) and lava morphology (from sheet to pillow flows) coincide with the boundaries of morphologically defined third order tectonic segments of the ridge crest visible in shipboard multibeam bathymetry. Pillow lava flows cover 25% of the surveyed area of the ridge crest and are closely associated with small lava domes that occur primarily at third-order segment ends. An additional 25% of the surveyed area of the ridge crest is covered by sheet lava flows found in close association with an axial collapse trough. The remaining terrain consists of lobate lava flows. We interpret the spatial correlations of morphologic, structural, seismic, and petrologic data as evidence that individual volcanic plumbing systems are organized at _20 km spacing along the ridge axis (third-order segment scale) in agreement with the hypothesis that volcanic and tectonic segmentations are correlated. For fast spreading ridges, we estimate that the longevity of volcanic segments is _104–105 years, 1–3 orders of magnitude longer than fourth-order segments (_102–103 years). This implies the present pattern of hydrothermal activity may reorganize tens or hundreds of times while volcanic segmentation remains fairly stable
The Cleft revealed: geologic, magnetic, and morphologic evidence for construction of upper oceanic crust along the southern Juan de Fuca Ridge
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q04003, doi:10.1029/2005GC001038.The geology and structure of the Cleft Segment of the Southern Juan de Fuca Ridge (JdFR) have been
examined using high-resolution mapping systems, observations by remotely operated vehicle (ROV),
ROV-mounted magnetometer, and the geochemical analysis of recovered lavas. Bathymetric mapping
using multibeam (EM300) coupled with in situ observations that focused on near-axis and flank regions
provides a detailed picture of 0 to 400 ka upper crust created at the southern terminus of the JdFR. A total
of 53 rock cores and 276 precisely located rock or glass samples were collected during three cruises that
included sixteen ROV dives. Our observations of the seafloor during these dives suggest that many of the
unfaulted and extensive lava flows that comprise and/or cap the prominent ridges that flank the axial valley
emanate from ridge parallel faults and fissures that formed in the highly tectonized zone that forms the
walls of the axial valley. The geochemically evolved and heterogeneous nature of these near-axis and flank
eruptions is consistent with an origin within the cooler distal edges of a crustal magma chamber or mush
zone. In contrast, the most recent axial eruptions are more primitive (higher MgO), chemically
homogeneous lobate, sheet, and massive flows that generate a distinct magnetic high over the axial valley.
We suggest that the syntectonic capping volcanics observed off-axis were erupted from near-axis and flank
fissures and created a thickened extrusive layer as suggested by the magnetic and seismic data. This model
suggests that many of the lavas that comprise the elevated ridges that bound the axial valley of the Cleft
Segment were erupted during the collapse of a magmatic cycle not during the robust phase that established
a new magmatic cycle.This research has been partially supported by a NSF grant
to M. Perfit (OCE-0221541). M. Tivey acknowledges support
from WHOI’s Mellon grant for Independent Study. Support for D. Stakes, T. Ramirez, D. Caress, and
N. Maher and for the entire field program was provided by funds
to MBARI from the Lucille and David Packard Foundation
Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere
The extent to which water and halogens have primordial origins in the Earth's mantle, or are dominated by seawater-derived components introduced by subduction, remains a matter of debate. About 90% of non-radiogenic xenon in the Earth's mantle has a subducted atmospheric origin, but the degree to which atmospheric gases and other seawater components are coupled during subduction is unclear. Here we present the concentrations of water and halogens in samples of magmatic glasses collected from global mid-ocean ridges and ocean islands. We show that water and halogen enrichment is unexpectedly associated with trace element signatures characteristic of dehydrated oceanic crust, and that the most incompatible halogens have relatively uniform abundance ratios that are different from primitive mantle values. Taken together, these results imply that Earth's mantle is highly processed and that most of its water and halogens were introduced by the subduction of serpentinised lithospheric mantle associated with dehydrated oceanic crust.Australian Research Council (FT130100141
Relative Timing of Off-Axis Volcanism from Sediment Thickness Estimates on the 8°20’N Seamount Chain, East Pacific Rise
Volcanic seamount chains on the flanks of mid-ocean ridges record variability in magmatic processes associated with mantle melting over several millions of years. However, the relative timing of magmatism on individual seamounts along a chain can be difficult to estimate without in situ sampling and is further hampered by Ar40/Ar39 dating limitations. The 8°20’N seamount chain extends ∼170 km west from the fast-spreading East Pacific Rise (EPR), north of and parallel to the western Siqueiros fracture zone. Here, we use multibeam bathymetric data to investigate relationships between abyssal hill formation and seamount volcanism, transform fault slip, and tectonic rotation. Near-bottom compressed high-intensity radiated pulse, bathymetric, and sidescan sonar data collected with the autonomous underwater vehicle Sentry are used to test the hypothesis that seamount volcanism is age-progressive along the seamount chain. Although sediment on seamount flanks is likely to be reworked by gravitational mass-wasting and current activity, bathymetric relief and Sentry vehicle heading analysis suggest that sedimentary accumulations on seamount summits are likely to be relatively pristine. Sediment thickness on the seamounts\u27 summits does not increase linearly with nominal crustal age, as would be predicted if seamounts were constructed proximal to the EPR axis and then aged as the lithosphere cooled and subsided away from the ridge. The thickest sediments are found at the center of the chain, implying the most ancient volcanism there, rather than on seamounts furthest from the EPR. The nonlinear sediment thickness along the 8°20’N seamounts suggests that volcanism can persist off-axis for several million years
The formation of the 8˚20’ N seamount chain, East Pacific rise
Near-axis seamounts provide a unique setting to investigate three-dimensional mantle processes associated with the formation of new oceanic crust and lithosphere. Here, we investigate the characteristics and evolution of the 8˚20’N Seamount Chain, a lineament of seamounts that extends ~ 175 km west of the East Pacific Rise (EPR) axis, just north of the fracture zone of the Siqueiros Transform Fault. Shipboard gravity, magnetic, and bathymetric data acquired in 2016 are utilized to
constrain models of seamount emplacement and evolution. Geophysical observations indicate that these seamounts formed during four distinct episodes of volcanism coinciding with changes in regional plate motion that are also reflected in the development of intra-transform spreading centers (ITSCs) along the Siqueiros transform fault (Fornari et al. 1989; Pockalny et al. 1997). Although volcanism is divided into distinct segments, the magnetic data indicate continuous volcanic construction over long portions of the chain. Crustal thickness variations along the chain up to 0.75 km increase eastward, inferred from gravity measurements, suggest that plate reorganization has considerably impacted melt distribution in the area surrounding the Siqueiros-EPR ridge transform intersection. This appears to have resulted in increased volcanism and the formation of the 8˚20’N Seamounts. These findings indicate that melting processes in the mantle and subsequently the formation of new oceanic crust and lithosphere are highly sensitive to tectonic stress changes in the vicinity of fast spreading transform fault offsets
Lava geochemistry as a probe into crustal formation at the East Pacific Rise
Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 89–93, doi:10.5670/oceanog.2012.06.Basalt lavas comprise the greatest volume of volcanic rocks on Earth, and most of them erupt along the world's mid-ocean ridges (MORs). These MOR basalts (MORBs) are generally thought to be relatively homogeneous in composition over large segments of the global ridge system (e.g., Klein, 2005). However, detailed sampling of two different regions on the northern East Pacific Rise (EPR) and extensive analysis of the samples show that fine-scale mapping and sampling of the ridge axis can reveal significant variations in lava chemistry on both small spatial and short temporal scales. The two most intensely sampled sites within the EPR Integrated Study Site (ISS) lie on and off axis between 9°17'N and 10°N, and from a wide region centered around 9°N where two segments of the EPR overlap (see Fornari et al., 2012, Figure 3, in this issue). The chemical composition of erupted lavas, similar to the genotype of an organism, can be used by igneous petrologists to trace the evolution of magmas from the mantle to the seafloor. The extensive and detailed geochemical studies at the EPR highlight how a thorough understanding of the variability in lava compositions on small spatial scales (i.e., between lava flows) and large spatial scales (i.e., from segment center to segment end and including discontinuities in the ridge crest) can be used in combination with seafloor photography, lava morphology, and bathymetry to provide insights into the magmatic system that drives volcanism and influences hydrothermal chemistry and biology at a fast-spreading MOR.Grants
that supported EPR ISS field and
laboratory studies for our research
programs include: MRP: OCE-0138088,
OCE-0819469, OCE-825265,
OCE-638406, OCE-527077,
OCE-535532; DJF: OCE-9819261,
OCE-0525863, OCE-0838923,
OCE-0096468, OCE-0732366,
and OCE-0112737
Channelized lava flows at the East Pacific Rise crest 9°–10°N : the importance of off-axis lava transport in developing the architecture of young oceanic crust
Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of
American Geophysical Union for personal use, not for redistribution. The definitive version was published
in Geochemistry Geophysics Geosystems 6 (2005): Q08005, doi:10.1029/2005GC000912.Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103 m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east or west of the AST, the ridge crest is asymmetric, and layer 2A appears to thicken over a greater distance from the AST toward the side of the ridge crest where the channels are located.This work was supported by NSF grant OCE-9819261 (to H.S., M.A.T., and D.J.F.) as well as the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Penzance Endowed Discretionary Fund
Interplay between faults and lava flows in construction of the upper oceanic crust : the East Pacific Rise crest 9°25′–9°58′N
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06005, doi:10.1029/2006GC001399.The distribution of faults and fault characteristics along the East Pacific Rise (EPR) crest between 9°25′N and 9°58′N were studied using high-resolution side-scan sonar data and near-bottom bathymetric profiles. The resulting analysis shows important variations in the density of deformational features and tectonic strain estimates at young seafloor relative to older, sediment-covered seafloor of the same spreading age. We estimate that the expression of tectonic deformation and associated strain on “old” seafloor is ~5 times greater than that on “young” seafloor, owing to the frequent fault burial by recent lava flows. Thus the unseen, volcanically overprinted tectonic deformation may contribute from 30% to 100% of the ~300 m of subsidence required to fully build up the extrusive pile (Layer 2A). Many longer lava flows (greater than ~1 km) dam against inward facing fault scarps. This limits their length at distances of 1–2 km, which are coincident with where the extrusive layer acquires its full thickness. More than 2% of plate separation at the EPR is accommodated by brittle deformation, which consists mainly of inward facing faults (~70%). Faulting at the EPR crest occurs within the narrow, ~4 km wide upper crust that behaves as a brittle lid overlying the axial magma chamber. Deformation at greater distances off axis (up to 40 km) is accommodated by flexure of the lithosphere due to thermal subsidence, resulting in ~50% inward facing faults accommodating ~50% of the strain. On the basis of observed burial of faults by lava flows and damming of flows by fault scarps, we find that the development of Layer 2A is strongly controlled by low-relief growth faults that form at the ridge crest and its upper flanks. In turn, those faults have a profound impact on how lava flows are distributed along and across the ridge crest.The field and laboratory studies were supported
by NSF grants OCE-9819261 (to H.S., M.A.T., and
D.J.F.), OCE-0525863 (D.J.F. and S.A.S.), OCE-0138088
(M.P.), WHOI Vetlesen Foundation Funds (J.E., D.J.F., and
S.A.S.). Additional support by INSU/CNRS to J.E. is also
acknowledged
Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N–9°56′N : implications for ridge crest plumbing and decadal changes in magma chamber compositions
Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05T09, doi:10.1029/2009GC002977.Detailed mapping, sampling, and geochemical analyses of lava flows erupted from an ∼18 km long section of the northern East Pacific Rise (EPR) from 9°46′N to 9°56′N during 2005–2006 provide unique data pertaining to the short-term thermochemical changes in a mid-ocean ridge magmatic system. The 2005–2006 lavas are typical normal mid-oceanic ridge basalt with strongly depleted incompatible trace element patterns with marked negative Sr and Eu/Eu* anomalies and are slightly more evolved than lavas erupted in 1991–1992 at the same location on the EPR. Spatial geochemical differences show that lavas from the northern and southern limits of the 2005–2006 eruption are more evolved than those erupted in the central portion of the fissure system. Similar spatial patterns observed in 1991–1992 lavas suggest geochemical gradients are preserved over decadal time scales. Products of northern axial and off-axis fissure eruptions are consistent with the eruption of cooler, more fractionated lavas that also record a parental melt component not observed in the main suite of 2005–2006 lavas. Radiogenic isotopic ratios for 2005–2006 lavas fall within larger isotopic fields defined for young axial lavas from 9°N to 10°N EPR, including those from the 1991–1992 eruption. Geochemical data from the 2005–2006 eruption are consistent with an invariable mantle source over the spatial extent of the eruption and petrogenetic processes (e.g., fractional crystallization and magma mixing) operating within the crystal mush zone and axial magma chamber (AMC) before and during the 13 year repose period. Geochemical modeling suggests that the 2005–2006 lavas represent differentiated residual liquids from the 1991–1992 eruption that were modified by melts added from deeper within the crust and that the eruption was not initiated by the injection of hotter, more primitive basalt directly into the AMC. Rather, the eruption was driven by AMC pressurization from persistent or episodic addition of more evolved magma from the crystal mush zone into the overlying subridge AMC during the period between the two eruptions. Heat balance calculations of a hydrothermally cooled AMC support this model and show that continual addition of melt from the mush zone was required to maintain a sizable AMC over this time interval.This work has been supported by
NSF grants OCE‐0525863 and OCE‐0732366 (D. J. Fornari
and S. A. Soule), OCE‐0636469 (K. H. Rubin), and OCE‐
0138088 (M. R. Perfit), as well as postdoctoral fellowship funds
from the University of Florida
Upper crustal structure and axial topography at intermediate spreading ridges : seismic constraints from the southern Juan de Fuca Ridge
Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 110 (2005): B12104, doi:10.1029/2005JB003630.We use multichannel seismic reflection data to image the upper crustal structure of 0-620
ka crust along the southern Juan de Fuca Ridge (JdFR). The study area comprises two
segments spreading at intermediate rate with an axial high morphology with narrow
(Cleft) and wide (Vance) axial summit grabens (ASG). Along most of the axis of both
segments we image the top of an axial magma chamber (AMC). The AMC along Cleft
deepens from south to north, from 2.0 km beneath the RIDGE Cleft Observatory and
hydrothermal vents near the southern end of the segment, to 2.3 km at the northern end
near the site of the 1980’s eruptive event. Along the Vance segment, the AMC also
deepens from south to north, from 2.4 km to 2.7 km. Seismic layer 2A, interpreted as the
basaltic extrusive layer, is 250-300 m thick at the ridge axis along the Cleft segment, and
300-350 m thick along the axis of the Vance segment. However off-axis layer 2A is
similar in both segments (500-600 m), indicating ~90% and ~60% off-axis thickening at
the Cleft and Vance segments, respectively. Half of the thickening occurs sharply at the
walls of the ASG, with the remaining thickening occurring within 3-4 km of the ASG.
Along the full length of both segments, layer 2A is thinner within the ASG, compared to
the ridge flanks. Previous studies argued that the ASG is a cyclic feature formed by
alternating periods of magmatism and tectonic extension. Our observations agree with
the evolving nature of the ASG. However, we suggest that its evolution is related to large
changes in axial morphology produced by small fluctuations in magma supply. Thus the
ASG, rather than being formed by excess volcanism, is a rifted flexural axial high. The
changes in axial morphology affect the distribution of lava flows along the ridge flanks,
as indicated by the pattern of layer 2A thickness. The fluctuations in magma supply may
occur at all spreading rates, but its effects on crustal structure and axial morphology are
most pronounced along intermediate spreading rate ridges.This study was supported by the National Science Foundation grants OCE-0002551 to
Woods Hole Oceanographic Institution, OCE-0002488 to Lamont-Doherty Earth
Observatory, and OCE-0002600 to Scripps Institution of Oceanography
- …