3,172 research outputs found

    Feedback-induced nonlinearity and superconducting on-chip quantum optics

    Full text link
    Quantum coherent feedback has been proven to be an efficient way to tune the dynamics of quantum optical systems and, recently, those of solid-state quantum circuits. Here, inspired by the recent progress of quantum feedback experiments, especially those in mesoscopic circuits, we prove that superconducting circuit QED systems, shunted with a coherent feedback loop, can change the dynamics of a superconducting transmission line resonator, i.e., a linear quantum cavity, and lead to strong on-chip nonlinear optical phenomena. We find that bistability can occur under the semiclassical approximation, and photon anti-bunching can be shown in the quantum regime. Our study presents new perspectives for engineering nonlinear quantum dynamics on a chip.Comment: 10 pages, 9 figure

    Absorbable versus silk sutures for surgical treatment of trachomatous trichiasis in Ethiopia: a randomised controlled trial.

    Get PDF
    BACKGROUND: Trachoma causes blindness through an anatomical abnormality called trichiasis (lashes touching the eye). Trichiasis can recur after corrective surgery. We tested the hypothesis that using absorbable sutures instead of silk sutures might reduce the risk of recurrent disease among patients with major trichiasis in a randomised trial. METHODS AND FINDINGS: 1,300 individuals with major trichiasis from rural villages in the Amhara Region of Ethiopia were recruited and assigned (1:1) by computer-generated randomisation sequence to receive trichiasis surgery using either an absorbable suture (polyglactin-910) or silk sutures (removed at 7-10 days) in an otherwise identical surgical technique. Participants were examined every 6 months for 2 years by clinicians masked to allocation. The primary outcome measure was recurrent trichiasis (≥one lash touching the eye) at 1 year. There was no difference in prevalence of recurrent trichiasis at 1 year (114 [18.2%] in the absorbable suture group versus 120 [19.7%] in the silk suture group; odds ratio = 0.90, 95% CI 0.68-1.20). The two groups also did not differ in terms of corneal opacification, visual acuity, conjunctival inflammation, and surgical complications. CONCLUSIONS: There was no evidence that use of absorbable polyglactin-910 sutures was associated with a lower prevalence of trichiasis recurrence at 1 year postsurgery than silk sutures. However, from a programmatic perspective, polyglactin-910 offers the major advantage that patients do not have to be seen soon after surgery for suture removal. The postoperative review after surgery using absorbable polyglactin-910 sutures can be delayed for 3-6 months, which might allow us to better determine whether a patient needs additional surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT00522860

    Classical and Quantum Equations of Motion for a BTZ Black String in AdS Space

    Full text link
    We investigate gravitational collapse of a (3+1)(3+1)-dimensional BTZ black string in AdS space in the context of both classical and quantum mechanics. This is done by first deriving the conserved mass per unit length of the cylindrically symmetric domain wall, which is taken as the classical Hamiltonian of the black string. In the quantum mechanical context, we take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning that the horizon is not an obstacle for him/her. The most interesting quantum mechanical effect comes in when investigating near the origin. First, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Second, the Schr\"odinger equation describing the behavior near the origin displays non-local effects, which depend on the energy density of the domain wall. This is manifest in that derivatives of the wavefunction at one point are related to the value of the wavefunction at some other distant point.Comment: 9 pages, 1 figure. Minor Clarification and corrections. Accepted for Publication in JHE

    Association between the c.*229C>T polymorphism of the topoisomerase IIb binding protein 1 (TopBP1) gene and breast cancer

    Get PDF
    Topoisomerase IIb binding protein 1 (TopBP1) is involved in cell survival, DNA replication, DNA damage repair and cell cycle checkpoint control. The biological function of TopBP1 and its close relation with BRCA1 prompted us to investigate whether alterations in the TopBP1 gene can influence the risk of breast cancer. The aim of this study was to examine the association between five polymorphisms (rs185903567, rs116645643, rs115160714, rs116195487, and rs112843513) located in the 30UTR region of the TopBP1 gene and breast cancer risk as well as allele-specific gene expression. Five hundred thirty-four breast cancer patients and 556 population controls were genotyped for these SNPs. Allele-specific Top- BP1 mRNA and protein expressions were determined by using real time PCR and western blotting methods, respectively. Only one SNP (rs115160714) showed an association with breast cancer. Compared to homozygous common allele carriers, heterozygous and homozygous for the T variant had significantly increased risk of breast cancer (adjusted odds ratio = 3.81, 95 % confidence interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and protein expression were higher in the individuals with the CT or TT genotype. There was a significant association between the rs115160714 and tumor grade and stage. Most carriers of minor allele had a high grade (G3) tumors classified as T2-T4N1M0. Our study raises a possibility that a genetic variation of TopBP1 may be implicated in the etiology of breast cancer

    Spawning rings of exceptional points out of Dirac cones

    Get PDF
    The Dirac cone underlies many unique electronic properties of graphene and topological insulators, and its band structure--two conical bands touching at a single point--has also been realized for photons in waveguide arrays, atoms in optical lattices, and through accidental degeneracy. Deformations of the Dirac cone often reveal intriguing properties; an example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone into isolated Landau levels. A seemingly unrelated phenomenon is the exceptional point, also known as the parity-time symmetry breaking point, where two resonances coincide in both their positions and widths. Exceptional points lead to counter-intuitive phenomena such as loss-induced transparency, unidirectional transmission or reflection, and lasers with reversed pump dependence or single-mode operation. These two fields of research are in fact connected: here we discover the ability of a Dirac cone to evolve into a ring of exceptional points, which we call an "exceptional ring." We experimentally demonstrate this concept in a photonic crystal slab. Angle-resolved reflection measurements of the photonic crystal slab reveal that the peaks of reflectivity follow the conical band structure of a Dirac cone from accidental degeneracy, whereas the complex eigenvalues of the system are deformed into a two-dimensional flat band enclosed by an exceptional ring. This deformation arises from the dissimilar radiation rates of dipole and quadrupole resonances, which play a role analogous to the loss and gain in parity-time symmetric systems. Our results indicate that the radiation that exists in any open system can fundamentally alter its physical properties in ways previously expected only in the presence of material loss and gain

    Epilation for minor trachomatous trichiasis: four-year results of a randomised controlled trial.

    Get PDF
    BACKGROUND: Trachomatous trichiasis (TT) needs to be managed to reduce the risk of vision loss. The long-term impact of epilation (a common traditional practice of repeated plucking of lashes touching the eye) in preventing visual impairment and corneal opacity from TT is unknown. We conducted a randomized controlled trial of epilation versus surgery for the management of minor TT (fewer than six lashes touching the eye) in Ethiopia. Here we report the four-year outcome and the effect on vision and corneal opacity. METHODOLOGY/ PRINCIPAL FINDINGS: 1300 individuals with minor TT were recruited and randomly assigned to quality trichiasis surgery or repeated epilation using high quality epilation forceps by a trained person with good near vision. Participants were examined six-monthly for two-years, and then at four-years after randomisation. At two-years all epilation arm participants were offered free surgery. At four-years 1151 (88.5%) were re-examined: 572 (88%) and 579 (89%) from epilation and surgery arms, respectively. At that time, 21.1% of the surgery arm participants had recurrent TT; 189/572 (33%) of the epilation arm had received surgery, while 383 (67%) declined surgery and had continued epilating ("epilation-only"). Among the epilation-only group, 207 (54.1%) fully controlled their TT, 166 (43.3%) had minor TT and 10 (2.6%) had major TT (>5 lashes). There were no differences between participants in the epilation-only, epilation-to-surgery and surgery arm participants in changes in visual acuity and corneal opacity between baseline and four-years. CONCLUSIONS/ SIGNIFICANCE: Most minor TT participants randomised to the epilation arm continued epilating and controlled their TT. Change in vision and corneal opacity was comparable between surgery and epilation-only participants. This suggests that good quality epilation with regular follow-up is a reasonable second-line alternative to surgery for minor TT for individuals who either decline surgery or do not have immediate access to surgical treatment

    Quantum Communication

    Get PDF
    Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics. In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted a diverse field of researchers in theoretical and experimental physics, mathematics and computer science. Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems. We review the current state of research and future directions in this new field of science with special emphasis on quantum key distribution and quantum networks.Comment: Submitted version, 8 pg (2 cols) 5 fig

    Avalanches in self-organized critical neural networks: A minimal model for the neural SOC universality class

    Full text link
    The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. The spin model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.Comment: 17 pages, 5 figure

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore