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The Dirac cone underlies many unique electronic properties of graphene1 and topological

insulators2, and its band structure—two conical bands touching at a single point—has also

been realized for photons in waveguide arrays3, atoms in optical lattices4, and through acci-

dental degeneracy 5, 6. Deformations of the Dirac cone often reveal intriguing properties; an

example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone

into isolated Landau levels7. A seemingly unrelated phenomenon is the exceptional point8–11,

also known as the parity-time symmetry breaking point12–15, where two resonances coincide

in both their positions and widths. Exceptional points lead to counter-intuitive phenomena

such as loss-induced transparency16, unidirectional transmission or reflection17–23, and lasers

with reversed pump dependence24–26 or single-mode operation27, 28. These two fields of re-

search are in fact connected: here we discover the ability of a Dirac cone to evolve into a ring

of exceptional points, which we call an “exceptional ring.” We experimentally demonstrate

this concept in a photonic crystal slab. Angle-resolved reflection measurements of the pho-

tonic crystal slab reveal that the peaks of reflectivity follow the conical band structure of a

Dirac cone from accidental degeneracy, whereas the complex eigenvalues of the system are

deformed into a two-dimensional flat band enclosed by an exceptional ring. This deforma-

tion arises from the dissimilar radiation rates of dipole and quadrupole resonances, which

play a role analogous to the loss and gain in parity-time symmetric systems. Our results in-

dicate that the radiation that exists in any open system can fundamentally alter its physical

properties in ways previously expected only in the presence of material loss and gain.

Closed and lossless physical systems are described by Hermitian operators, which guaran-

tee realness of the eigenvalues and a complete set of eigenfunctions that are orthogonal to each
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other. On the other hand, systems with open boundaries10, 29 or with material loss and gain12–14, 16–28

are non-Hermitian8 and have non-orthogonal eigenfunctions with complex eigenvalues where the

imaginary part corresponds to decay or growth. The most drastic difference between Hermitian

and non-Hermitian systems is that the latter exhibit exceptional points (EPs) where both the real

and the imaginary parts of the eigenvalues coalesce. At an EP, two (or more) eigenfunctions col-

lapse into one so the eigenspace no longer forms a complete basis, and this eigenfunction becomes

orthogonal to itself under the unconjugated inner product8–11. To date, most studies of EP and

its intriguing consequences concern parity-time symmetric systems that rely on material loss and

gain12–14, 16–28, but EP is a general property that requires only non-Hermiticity. Here, we show the

existence of EPs in a photonic crystal slab with negligible absorption loss and no artificial gain.

When a Dirac-cone system has dissimilar radiation rates, the band structure is altered abruptly

to show branching features with a ring of EPs. We provide a complete picture from analytic

model and numerical simulation to experimental observation; together, they illustrate the role of

radiation-induced non-Hermiticity that bridges the study of EPs and the study of Dirac cones.

We start by showing that non-Hermiticity from radiation can deform an accidental Dirac

point into a ring of EPs. First, consider a 2D photonic crystal (PhC)30 (inset of Fig. 1a), where

a square lattice (periodicity a) of circular air holes (radius r) is introduced in a dielectric mate-

rial. This is a Hermitian system, as there is no material gain or loss and no open boundary for

radiation. By tuning a system parameter (for example, r), one can achieve accidental degeneracy

between a quadrupole mode and two degenerate dipole modes at the Γ point (center of the Bril-

louin zone), leading to a linear Dirac dispersion due to the anti-crossing between two bands with
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the same symmetry5, 31. The accidental Dirac dispersion from the effective Hamiltonian model

(see equation (1) below with γ0 = 0) is shown as solid lines in Fig. 1a , agreeing with numeri-

cal simulation results (symbols in Fig. 1a). In the effective Hamiltonian we do not consider the

dispersionless third band (gray line) due to symmetry arguments (section I in Supplementary In-

formation), although this third band cannot be neglected in certain calculations, including Berry

phase and effective medium property32, 33.

Next, we consider a similar, but open, system: a PhC slab (inset of Fig. 1b) with finite thick-

ness h. With the open boundary, modes within the radiation continuum become resonances because

they radiate by coupling to extended plane waves in the surrounding medium. Non-Hermitian per-

turbations need to be included in the Hamiltonian to account for the radiation loss. To the leading

order, radiation of the dipole mode can be described by adding an imaginary part −iγd to the

Hamiltonian, while the quadrupole mode does not radiate due to its symmetry mismatch with the

plane waves34. Specifically, at the Γ point the system has C2 rotational symmetry (invariant under

180◦ rotation around the z axis), and the quadrupole mode does not couple to the radiating plane

wave because the former is even [E(r) = ÔC2E(r)] whereas the latter is odd [E(r) = −ÔC2E(r)]

under C2 rotation30. The effective Hamiltonian is

Heff =

 ω0 vgk

vgk ω0 − iγd

 , (1)

with complex eigenvalues

ω± = ω0 − i
γd

2
± vg

√
k2 − k2

c , (2)

where ω0 is the frequency at accidental degeneracy, vg is the group velocity of the linear Dirac

dispersion in the absence of radiation, k is the magnitude of the in-plane wavevector (kx, ky), and
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kc ≡ γd/2vg. Here, one of the three bands is decoupled from the other two and is not included

in equation (1) (see section II of Supplementary Information). In equation (2), a ring defined by

k = kc separates the k space into two regions: inside the ring (k < kc), Re(ω±) are dispersionless

and degenerate; outside the ring (k > kc), Im(ω±) are dispersionless and degenerate. In the vicinity

of kc, Im(ω±) and Re(ω±) exhibit square-root dispersion (also known as branching behavior) inside

and outside the ring, respectively. Exactly on the ring (k = kc), the two eigenvalues ω± are

degenerate in both real and imaginary parts; meanwhile, the matrixHeff becomes defective with an

incomplete eigenspace spanned by only one eigenvector (1, -i)T that is orthogonal to itself under

the unconjugated inner product. This self-orthogonality is the definition of EPs; hence, here we

have not just one EP, but a continuous ring of EPs. We call it an exceptional ring.

Fig. 1b,c show the complex eigenvalues of the PhC slab structure calculated numerically

(symbols), which closely follow the analytic model of equation (2) shown as solid lines in the

figure. When the radius r of the holes is tuned away from accidental degeneracy, the exceptional

ring and the associated branching behavior disappear, as shown in Fig. S1. Several properties

of the PhC slab contribute to the existence of this exceptional ring. Due to periodicity, one can

probe the dispersion from two degrees of freedom, kx and ky, in just one structure. The open

boundary provides radiation loss, and the C2 rotational symmetry differentiates the radiation loss

of the dipole mode and of the quadrupole mode.

We can rigorously show that the exceptional ring exists in realistic PhC slabs, not just in

the effective Hamiltonian model. Our proof is based on the unique topological property of EPs:

when the system parameters evolve adiabatically along a loop encircling an EP, the two eigenvalues
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switch their positions when the system returns to its initial parameters10, 11, 29, 35, in contrast to the

typical case where the two eigenvalues return to themselves. Using this property, we numerically

show, in Fig. S2 and section III of Supplementary Information, that the complex eigenvalues always

switch their positions along every direction in the k space, and therefore prove the existence of this

exceptional ring. As opposed to the simplified effective Hamiltonian model, in a real PhC slab, the

EP may exist at a slightly different magnitude of k and for a slightly different hole radius r along

different directions in the momentum space, but this variation is small and negligible in practice

(section IV of Supplementary Information).

To demonstrate the existence of the exceptional ring in such a system, we fabricate large-area

periodic patterns in a Si3N4 slab (n = 2.02, thickness 180 nm) on top of 6 µm of silica (n = 1.46)

using interference photolithography34. Scanning electron microscope (SEM) images of the sample

are shown in Fig. 2a, featuring a square lattice (periodicity a = 336 nm) of air cylindrical holes

with radius of 109 nm. We immerse the structure into an optical liquid and tune the refractive

index of the liquid; accidental degeneracy in the Hermitian part is achieved when the liquid index

is selected to be n = 1.48. We perform angle-resolved reflectivity measurements (setup shown in

Fig. 2b) between 0 and 2 degrees along the Γ to X direction and the Γ to M direction, for both s

and p polarizations. The measured reflectivity for the relevant polarization is plotted in the upper

panel of Fig. 2c, showing good agreement with numerical simulation results (lower panel), with

differences coming from scattering of disorder, inhomogeneous broadening, and the uncertainty in

the measurements of system parameters. The complete experimental result for both polarizations

is shown in Fig. S3; the third and dispersionless band shows up in the other polarization, decoupled
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from the two bands of interest.

The peaks of reflectivity (dark red color in Fig. 2c) follow the linear Dirac dispersion; this

feature disappears for structures with different radii that do not reach accidental degeneracy (exper-

imental results in Fig. S4). To understand the reflection peaks, we consider a generic two-by-two

Hamiltonian H with no assumption made about its matrix elements. We separate H into a Hermi-

tian part A and an anti-Hermitian part -iB (so that A and B are both Hermitian), and choose the

basis in which A is diagonal:

UHUT =

 Ω1 0

0 Ω2


︸ ︷︷ ︸

A

− i

 γ1 γ12

γ∗12 γ2


︸ ︷︷ ︸

iB

eigenvalues−−−−−→

 ω+ 0

0 ω−

 . (3)

As before, we use ω± to denote the complex eigenvalues of the Hamiltonian A − iB. The reflec-

tivity in our system can be modeled using temporal coupled-mode theory (TCMT, with details in

section V of Supplementary Information), where we show that the reflection peaks generally occur

near the eigenvalues Ω1,2 of the Hermitian part A and are independent of the non-Hermitian part

−iB (Fig. S5 with details in section VI in Supplementary Information). Therefore, the peak loca-

tions in Fig. 2c (dark red) reveal information about only the Hermitian part of the Hamiltonian; the

fact that they show linear Dirac dispersion indicates that we have successfully achieved accidental

degeneracy in the eigenvalues of the Hermitian part, consistent with the simplified model in equa-

tion (1). In Fig. S6, we plot the Ω1,2 extracted from the reflectivity data through a more rigorous

data analysis using TCMT (described below); the linear dispersion is indeed observed.

The eigenvalues of the Hamiltonian, ω±, behave very differently from the reflectivity peaks.

Simulation results (white lines in the lower panel of Fig. 2c) show Re(ω±) are dispersionless at

7



small angles with a branch-point singularity around 0.31◦—consistent with the feature predicted

by the simplified Hamiltonian in equation 2. In Fig. 2d, we compare the reflectivity spectra from

simulations (with peaks indicated in red arrows) with the corresponding complex eigenvalues at

three representative angles (0.8◦ in blue, 0.31◦ in green, and 0.1◦ in magenta). At 0.31◦, the two

complex eigenvalues are degenerate, indicating an EP; however, the two reflection peaks do not

coincide since they represent the eigenvalues of only the Hermitian part of the Hamiltonian, which

does not have degeneracy here. The dip in reflectivity between the two peaks (marked as black

arrows in Figs. 2 and 3) is the coupled-resonator-induced transparency (CRIT) that arises from the

interference between radiation of the two resonances36, 37, similar to electromagnetically induced

transparency (EIT)38.

To extract the underlying Hamiltonian matrix and its eigenvalues from the measured re-

flectivity spectrum, we use TCMT to model the direct and the resonant reflection processes; the

expression for reflectivity is given in equation (S.15) with the full derivation given in section V

of the Supplementary Information. Fitting the reflectivity curves with the TCMT expression gives

us the matrix elements of the Hamiltonian (as shown in equation (3)) that we use to calculate its

eigenvalues; this procedure is the same as our approach in Ref. 39 except that here we handle mul-

tiple resonances simultaneously, accounting for their non-orthogonality and radiative coupling40.

Fig. 3a compares the fitted and the measured reflectivity curves at three representative angles (with

more comparison in Fig. S6a); the excellent agreement shows the validity of the TCMT equations.

Underneath the reflectivity curves, we show the complex eigenvalues.

Repeating the fitting procedure for reflectivity spectrum measured at different angles, we
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obtain the dispersion curves for all complex eigenvalues, which are plotted in Fig. 3b. Along

both directions in k space (Γ → X and Γ → M), the two bands of interest (shown in blue and

red) exhibit the EP behavior predicted in equation (2): for k < kc the real parts are degenerate

and dispersionless; for k > kc the imaginary parts are degenerate and dispersionless; for k in the

vincinity of kc branching features are observed in the real or imaginary part. In Fig. 3c, we plot the

eigenvalues on the complex plane for both the Γ → X and Γ → M directions. We can see that in

both directions, the two eigenvalues approach each other and become very close at certain k point,

which is a clear signature of the system being very near EP.

We have shown that non-Hermiticity arising from radiation can significantly alter fundamen-

tal properties of the system including the band structures and density of states; this effect becomes

most prominent near EPs. The PhC slab described here provides a simple-to-realize platform for

studying the influence of EPs on light-matter interaction, such as for single particle detection41

and modulation of quantum noise42. The two-dimensional flat band also provides high density

of states and therefore high Purcell factors. The strong dispersion of loss in the vicinity of the Γ

point can improve the performance of large-area single-mode PhC lasers43. The deformation into

exceptional ring can also occur for non-accidental Dirac points44. Further studies can advance the

understanding of the connection between the topological property of Dirac points2, 45 and that of

EPs35 in general non-Hermitian wave systems, and this method of our study goes beyond photonics

to phonons, electrons, and atoms.

METHODS SUMMARY

Sample fabrication. The Si3N4 layer was grown with the low-pressure chemical vapor deposition
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method on a 6µm-thick cladding of SiO2 on the backbone of a silicon wafer (LioniX). Before

exposure, the wafer was coated with a layer of polymer as anti-reflection coating, a thin layer of

SiO2 as an intermediate layer for etching, and a layer of negative photoresist for exposure. The

square lattice pattern was created with Mach−Zehnder interference lithography using a 325-nm

He/Cd laser. The angle between the two arms of the laser beam was chosen for a periodicity of

336 nm. After exposures, the pattern in the photoresist was transferred to Si3N4 by reactive-ion

etching.

Experimental details. The source was a supercontinuum laser from NKT Photonics (SuperK-

Compact). A polarizer selected s- or p-polarized light. The sample was immersed in a colorless

liquid with tunable refractive indices (Cargille Labs). The sample was mounted on two perpen-

dicular motorized rotation stages (Newport): one to orient the PhC to the Γ-X or Γ-M direction,

and the other to determine the incident angle θ. The reflectivity spectra were measured with a

spectrometer with spectral resolution of 0.02 nm (HR4000; Ocean Optics).
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Figure 1: Accidental degeneracy in Hermitian and non-Hermitian photonic crystals (PhC).

a, Band structure of a 2D PhC consisting of a square lattice of circular air holes. Tuning the

radius r leads to accidental degeneracy between a non-degenerate quadrapole band and two doubly

degenerate dipole bands, resulting in two bands with linear Dirac dispersion (red and blue) and a

flat band (gray). b,c, The real and imaginary parts of the eigenvalues of an open, and therefore non-

Hermitian, system: a PhC slab with finite thickness h. By tuning the radius, accidental degeneracy

in the real part can be achieved, but the Dirac dispersion is deformed due to the non-Hermiticity.

The analytic model predicts that the real (imaginary) part of the eigenvalue stays as a constant

within (outside) a ring in the wavevector space, indicating two flat bands in dispersion, with a ring

of exceptional points (EPs) where both the real and the imaginary parts are degenerate. In the upper

panels, solid lines are from the analytic model and symbols are from numerical simulations: red

squares represent the band connecting to the quadrapole mode at the center; blue circles represent

the band connecting to the dipole mode at the center; and gray crosses represent the third band that

is decoupled from the previous two due to symmetry. The 3D plots in the lower panels are from

simulations.
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Figure 2: Experimental reflectivity spectrum and accidental Dirac dispersion. a, SEM images

of the PhC samples: side view (upper panel) and top view (lower panel). b, Schematic drawing

of the measurement setup. Light from a super-continuum source reflects off the PhC slab and

is collected using a spectrometer. The incident angle is controlled using a precision rotationary

stage. (BS: beam splitter; SP: spectrometer) c, Reflectivity spectrum of the sample measured

experimentally (upper panel) and calculated numerically (lower panel) along the Γ to X and the Γ

to M directions. The peak location of reflectivity reveals the Hermitian part of the system, which

forms Dirac dispersion due to accidental degeneracy. White lines in the lower panel indicate real

part of the eigenvalues. d, Three line cuts of reflectivity from simulation results. Also shown are

the complex eigenvalues (hollow circles) calculated numerically. At large angles (0.8◦), the two

resonances are far apart, so the reflectivity peaks (red arrows) are close to the actual positions of

the complex eigenvalues. However, at small angles (0.3◦, 0.1◦), the coupling between resonances

cause the resonance peaks (red arrows) to have much greater separations in frequencies compared

to the complex eigenvalues. The black arrows mark the dips in reflectivity that correspond to the

coupled-resonator induced transparency (CRIT, see text for details).
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b) Complex eigenvalues of the system
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Figure 3: Experimental demonstration of exceptional ring. a, Examples of reflection spectrum

from the sample at three different angles (0.8◦ blue, 0.3◦ green and 0.1◦ magenta, solid lines)

measured with s-polarized light along Γ to X direction (same setup as in numerical simulations

shown in Fig. 2d), fitted with the TCMT expression (equation (S.15)) (black dashed lines). At

each angle, the position of the complex eigenvalue extracted experimentally are shown as hollow

circles. b, Complex eigenvalues extracted experimentally (symbols), with comparison to numerical

simulation results (dashed lines) for both the real part (left panel) and the imaginary part (right

panel). Red squares and dashed lines are used for the band with zero radiation loss at the Γ point,

blue circles and dashed lines for the band with finite radiation loss at the Γ point, and gray crosses

and dashed lines for the third band decoupled from the previous two due to symmetry. c, Positions

of the eigenvalues approach and become very close to each other (indicated by the two brown

arrows), demonstrating near EP features in different directions in the momentum space and the

existence of an exceptional ring.
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Supplementary information

Section I. Effective Hamiltonian of accidental Dirac points in Hermitian systems

To the leading order of approximation, the effective Hamiltonian for accidental Dirac cones in

Hermitian systems (2D PhC) is written as a 3× 3 matrix due to the involvement of three bands:

H2D
eff =


ω0 vgkx vgky

vgkx ω0 0

vgky 0 ω0

 (S.1)

that can be transformed into:

UH2D
eff U

T =


ω0 vgk 0

vgk ω0 0

0 0 ω0

 (S.2)

with the orthogonal transformation matrix

U =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (S.3)

Here, cos θ = kx/k, sin θ = ky/k, kx,y are in-plane wavevectors. After transformation, the 3 × 3

matrix becomes two isolated blocks: the upper 2 × 2 block gives the conical Dirac dispersion

(ω = ω0 ± vgk), while the lower block is the intersecting flat band (ω = ω0).

Section II. Effective non-Hermitian Hamiltonian of the exceptional ring

For a 3D PhC slab that has finite thickness, the two dipole modes become resonances with finite

lifetime due to their coupling to radiation; therefore, their eigenvalues become complex (ω0− iγd).
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With C4 rotational symmetry, these two dipole modes are identical to each other under an 90◦

rotation and therefore share the same complex eigenvalue. Meanwhile, the quadrapole mode does

not couple to radiation at the Γ point due to symmetry mismatch, and to leading order its eigenvalue

remains at ω0. The effective non-Hermitian Hamiltonian of the 3D PhC slab becomes

H3D
eff =


ω0 vgkx vgky

vgkx ω0 − iγd 0

vgky 0 ω0 − iγd

 , (S.4)

which transforms to

UH3D
eff U

T =


ω0 vgk 0

vgk ω0 − iγd 0

0 0 ω0 − iγd

 (S.5)

with the same matrix U as in equation S.3. The upper 2 × 2 block is the Heff we refer to in

equation (1) that givies rise to an exceptional ring, while the lower block is the intersecting flat

band.

Section III, Existence of exceptional points along every direction in momentum space

In this section, we demonstrate that EPs exist in all directions in the k space, not only for a sim-

plified Hamiltonian (equation 1), but also for realistic structures. To prove their existence, we use

the unique topological property of EPs: when the system evolves adiabatically in the parameter

space around an EP, the eigenvalues will switch their positions at the end of the loop10, 35. In our

system, the parameter space in which we choose to evolve the eigenfunctions is three-dimensional,

consisting of the two in-plane wavevectors (kx, ky) and the radius of the air holes r, as shown in

Fig. S2a. Here, r can also be other parameters, like the refractive index of the PhC slab (n), the
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periodicity of the square lattice (a), or the thickness of the slab (h). For simplicity of this demon-

stration, we choose r as the varying parameter while keeping all other parameters (n, a, and h)

fixed throughout.

First, we compare the evolution of the eigenvalues when the system parameters follow (1) a

loop that does not enclose an EP, and (2) one that encloses an EP. Following the loop A → B →

C → D → A in Fig. S2a,b that does not enclose an EP (point EP), we see that the complex

eigenvalues come back to themselves at the end of the loop (Fig. S2c where the red dot and the

blue dot return to their initial positions at the end of the loop). However, following the loop

A′ → B′ → C ′ → D′ → A′ in Fig. S2d, which encloses an EP (point EP), we see that the

complex eigenvalues switch their positions in the complex plane (Fig. S2f where the red dot and

the blue dot switch their positions). This switching of the eigenvalues shows the existence of an

EP along the Γ to X direction, at some particular value of kx and some particular value of radius

r. This shows the existence of the EP without having to locate the exact parameters of kx and r at

which the EP occurs.

Similarly, we can evolve the parameters along any direction θ = tan(ky/kx) in the k space

and check if an EP exists along this direction or not. As two examples, we show the evolution of

the complex eigenvalues when we evolve the parameters along the θ = π/8 direction following

the loop A′′ → B′′ → C ′′ → D′′ → A′′ and along the θ = π/4 direction following the loop

A′′′ → B′′′ → C ′′′ → D′′′ → A′′′ in Fig. S2g,h. In both cases, we observe the switching of the

eigenvalues, showing the existence of an EP along these two directions. The same should hold for

every direction in k space.
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The above calculations show that for every direction θ we examined in the k space, there

is always a particular combination of kc and rc, which supports an EP. However, we note that in

general, different directions can have different kc and different rc, so the exceptional ring for the

realistic PhC slab structure is parameterized by kc(θ) and rc(θ). This angular variation of kc(θ)

and rc(θ) can be described by introducing higher order corrections in the effective Hamiltonian,

which we examine in the next section.

Section IV, Generalization of the effective Hamiltonian

Here, we generalize the effective Hamiltonian in equation (1) and (S.5). First, the radiation of the

quadrapole mode is zero only at the Γ point; away from the Γ point, the quadrapole mode has a

~k-dependent radiation that is small but non-zero, which we denote with γq. Second, we consider

possible deviation from accidental degeneracy in the Hermitian part, with a frequency walk-off δ.

With these two additional ingredients, the effective Hamiltonian becomes ω0 + δ vgk

vgk ω0

 − i
 γq

√
γqγd

√
γqγd γd

 , (S.6)

with complex eigenvalues of

ω± = ω0 +
δ

2
− iγq + γd

2
±

√(
vgk − i

√
γqγd

)2 −
(
γd − γq

2
− iδ

2

)2

, (S.7)

which generalizes equations (1) and (2). We note that the off-diagonal term √γqγd in equa-

tion (S.6) is required by energy conservation and time-reversal symmetry40, 46, as we will discuss

more in the next section. Equation (S.7) shows that EP occurs when the two conditions
k = (γd − γq)/(2vg) ≈ γd/2vg,

δ = 2
√
γdγq,

(S.8)
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are satisfied. In the region of momentum space of interest, γq is much smaller than γ0 (this can

be seen, for example, from the imaginary parts of Fig. S1a,c), so the first condition becomes

kc ≈ γd/2vg, same as in the simplified model. For a given direction θ in the k space (as discussed

in the previous section), we can vary the magnitude k and the radius r to find the kc(θ) and rc(θ)

where these two conditions are met simultaneously.

We can now analyze the angular dependence of kc(θ) and rc(θ) without having to find their

exact values. The first condition of equation (S.8) says that the angular dependence of kc(θ) comes

from γd and vg; in the PhC slab structure here, we find that γd varies by about 20% as the angle

θ = tan(ky/kx) is varied; while vg remains almost the same; therefore, kc(θ) potentially varies by

around 10% along the exceptional ring. For the second condition of equation (S.8), we have γd ≈

5×10−3ω0 and γq ≈ 5×10−5ω0 for our PhC slab structure, so δc = 2
√
γdγq ≈ 1×10−3ω0. Again,

γd and γq vary by about 20% as the angle θ is changed, so δc can change by around 2 × 10−4ω0.

Empirically, we find that a change of δ by 2 × 10−4ω0 corresponds to a change in the radius r of

around 0.06 nm, which is the estimated range of variation for rc(θ) of all θ ∈ [0, 2π). This angular

variation is much smaller than our structure can resolve in practice, since the radii of different

holes within one fabricated PhC slab will already differ by more than 0.06 nm. So, in practice a

given fabricated structure can be close to EP along all different directions θ, but is unlikely to be

an exact EP for any direction.

Section V, Temporal Coupled Mode Theory (TCMT)

To connect the Hamiltonian of the resonances to the experimentally measured reflectivity, we resort

to temporal coupled-mode theory (TCMT)30, 47. Here, we consider a very general setup with an
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arbitrary number of resonances in the PhC slab. The time evolution of these n resonances, whose

complex amplitudes are denoted by an n× 1 column vector A, is described by the Hamiltonian H

and a driving term,

dA

dt
= −iHA+KTs+, (S.9)

where the Hamiltonian is an n× n non-Hermitian matrix

H = Ω− iΓ− iγnr, (S.10)

with Ω denoting its Hermitian part, −iΓ denoting its anti-Hermitian part from radiation loss, and

−iγnr its anti-Hermitian part from non-radiative decays including absorption and surface rough-

ness. For simplicity, we consider the same non-radiative loss for all resonances, so γnr is a real

number instead of a matrix.

Reflectivity measurements couple the n resonances to the incoming and outgoing planewaves,

whose complex amplitudes we denote by two 2×1 column vectors, s+ and s−. The direct reflection

and transmission of the planewaves through the slab (in the absence of resonances) are described

by a 2× 2 complex symmetric matrix C, and

s− = Cs+ +DA, (S.11)

where D and K in equation (S.9) are 2 × n complex matrices denoting coupling between the

resonances and the planewaves. We approximate the direct scattering matrix C by that of a ho-

mogeneous slab whose permittivity is equal to the spatial average of the PhC slab39, 48, 49. Lastly,

outgoing planewaves into the silica substrate are reflected at the silica-silicon interface, so

s2+ = e2iβhsr23s2−, (S.12)
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where hs is the thickness of the silica substrate with refractive index ns = 1.46, β =
√
n2

sω
2/c2 − |k‖|2

is the propagation constant in silica, and r23 is the Fresnel reflection coefficient between silica and

the underlying silicon. The formalism described above is the same as Ref. 39 except that here we

describe the n resonances in a more general setting that accounts for their coupling (off-diagonal

terms of H) and therefore their non-orthogonality.

For steady state with e−iωt time dependence, we solve for vector A from equation (S.9) to

get the scattering matrix of the whole system that includes both direct and resonant processes,

s− = (C + Cres)s+, (S.13)

where the effect of the n resonances is captured in a 2× 2 matrix

Cres = iD(ω −H)−1KT. (S.14)

We can solve equation (S.12) and equation (S.13) to obtain the reflectivity

RTCMT =

∣∣∣∣s1−

s1+

∣∣∣∣2 . (S.15)

In this expression, the only unknown is Cres. Therefore, by comparing the experimentally mea-

sured reflectivity spectrum R(ω) and the one given by TCMT in equation (S.15), we can extract

the unknown parameters in the resonant scattering matrix Cres and obtain the eigenvalues of the

Hamiltonian H .

The remaining task is to write Cres using as few unknowns as possible so that the eigenvalues

of H can be extracted unambiguously. In equation (S.14), there are a large number of unknowns

in the matrix elements of H , D, and K, but there is much redundancy because the matrix elements

are not independent variables and because Cres is independent of the basis choice. Below, we show
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that we can express Cres with only 2n + 1 unknown real numbers, and these 2n + 1 real numbers

are enough to determine the n complex eigenvalues of H .

First, we normalize the amplitudes of A and s± such that their magnitude squared are the

energy of the resonances per unit cell and the power of the incoming/outgoing planewaves per unit

cell, respectively. Then, energy conservation, time-reversal symmetry, and C2 rotational symmetry

of the PhC slab40, 46 require the direct scattering matrix to satisfy C† = C∗ = C−1 and the coupling

matrices to satisfy D†D = 2Γ, K = D, and CD∗ = −D. It follows that the matrix Γ is real

and symmetric. Next, using the Woodbury matrix identity and these constrains, we can rewrite

equation (S.14) as

Cres = −2W (2 +W )−1C, (S.16)

where W ≡ iD(ω − Ω + iγ0)−1D† is a 2-by-2 matrix. We note that the matrix W , and therefore

the matrix Cres, is invariant under a change of basis for the resonances through any orthogonal

matrix U (where Ω is transformed to UΩU−1, and D is transformed to DU−1). Therefore, we are

free to choose any basis. Given the expression for W , we choose the basis where Ω is diagonal, so

Ωij = Ωjδij , with {Ωj}nj=1 being the eigenvalues of Ω.

To proceed further, we note that the PhC slab sits on a silica substrate with ns = 1.46 and is

immersed in a liquid with n = 1.48, so the structure is nearly symmetric in z direction. The mirror

symmetry requires the coupling to the two sides to be symmetric or anti-symmetric30,

D1j

D2j

≡ σj = ±1, j = 1, . . . , n, (S.17)

where σj = 1 for TE-like resonances and σj = −1 for TM-like resonances, in the convention

where (Ex, Ey) determines the phase of Aj and s±. Then, the diagonal elements of Γ are related

27



to D by Γjj ≡ γj = |D1j|2, and in this basis we have

W =
n∑
j=1

iγj
ω − Ωj + iγnr

 1 σj

σj 1

 . (S.18)

This completes our derivation. Equations (S.16) and (S.18) provide an expression for Cres that

depends only on 2n + 1 unknown non-negative real numbers: the n eigenvalues {Ωj}nj=1 of the

Hermitian matrix Ω, the n diagonal elements {γj}nj=1 of the real-symmetric radiation matrix Γ in

the basis where Ω is diagonal, and the non-radiative decay rate γnr.

At each angle and each polarization, we fit the experimentally measured reflectivity spectrum

R(ω) to the TCMT expression equation (S.15) to determine these 2n + 1 unknown parameters.

Fig. 3a and Fig. S6a show the comparison between the experimental reflectivity spectrum and

the fitted TCMT reflectivity spectrum at some representative angles. The near-perfect agreement

between the two demonstrates the validity of the TCMT model.

To obtain the eigenvalues of the Hamiltonian H , we also need to know the off-diagonal

elements of Γ. From D†D = 2Γ and D1j/D2j = σj , we see that Γij = 0 when resonance i and

resonance j have different symmetries in z (i.e. when σiσj 6= 1), and that Γij = ±√γiγj when

σiσj = 1. In the latter case, the sign of Γij depends on the choice of basis; the eigenvalues of H

are independent of the basis choice, so to calculate the eigenvalues of H , we can simply take the

positive root for all of the non-zero off-diagonal elements of Γ.

We note that the model Hamiltonians introduced previously, such as equation (1) in the main

text and equations (S.5) and (S.6) above, are all special cases of the general Hamiltonian in equa-

tion (S.10) that we consider in the TCMT formalism in this section. Those model Hamiltonians fix

the number of resonances, assume simple forms of their parameters, and choose a specific basis
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in order to convey the physical picture. Meanwhile, the TCMT formalism in this section does not

make such assumptions (aside from basic principles such as energy conservation and time-reversal

symmetry) so that it can be used as an unbiased method for analyzing the experimental data.

We also note that the TCMT equations, from (S.9) to (S.17), are all written in the general

matrix notation where one is free to choose any basis for the Hamiltonian H; we only make the

specific basis choice (the basis where Ω is diagonal) in equation (S.18) in order to simplify the

expression for matrixW , and in equation (3) of the main text in order to emphasize the eigenvalues

Ω. Meanwhile, physical observables, such as Cres in equation (S.14), RTCMT in equation (S.15),

and the eigenvalues of H , are all independent of the basis choice.

Section VI, Reflection peaks and CRIT

In this section, we use a simplified scenario (a special case of the previous section) to illustrate

that the peaks of the reflectivity generally follow the eigenvalues of Ω and to show the coupled-

resonator-induced-transparency (CRIT).

Consider a simplified scenario with two resonances of the same symmetry in z and without

non-radiative loss (i.e. n = 2, σ1 = σ2, γnr = 0), and ignore the direct Fresnel reflection between

the dielectric layers (so that the direct scattering matrix C has no reflection, and that s2+ = 0 in

equation (S.12)). In such case, equations (S.15) (S.16) (S.18) give

RTCMT(ω) =
1

1 + f 2(ω)
,

1

f(ω)
=

γ1

ω − Ω1

+
γ2

ω − Ω2

. (S.19)

We immediately see that the reflectivity reaches its maximal value of 1 when ω = Ω1 or ω = Ω2,

namely at the eigenvalues of the matrix Ω. Another feature we can observe is that the reflectivity is

0 when ω = (γ1Ω2 + γ2Ω1)/(γ1 + γ2), which is a phenomenon called coupled-resonator-induced-
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transparency (CRIT)36, 37.

We emphasize that the reflectivity peaks are different from the complex eigenvalues of the

Hamiltonian H . Consider a simple example with Ω1,2 = ω0 ± b, and γ1 = γ2 = b. The reflection

peaks at Ω1,2 = ω0 ± b, while the two complex eigenvalues are degenerate at ω+ = ω− = ω0 − ib,

whose real part is in the middle of the two reflection peaks. This explains the reflectivity from the

PhC slabs at 0.3◦ shown in Fig. 2d and Fig. 3a, where the degenerate complex eigenvalues of the

system are in between the two reflection peaks.

In Fig. S5, we use some examples to illustrate the difference between the reflectivity peaks

and the complex eigenvalues. Fig. S5a shows the case when there is only one resonance (removing

one of the two terms in equation (S.19)) with complex eigenvalue ω0−iγ; in this case, the reflection

peak (red arrow) is at the same position as the real part of the complex eigenvalue. In contrast,

Fig. S5b shows the case when there are two resonances (equation (S.19)) with Ω1,2 fixed at ω0± b;

as we vary γ1,2, the complex eigenvalues (circles) vary accordingly, whereas the reflectivity peaks

(red arrows) always show up at Ω1,2.

For the realistic PhC slab structure in our experiment, the reflectivity is described by the more

general expression, equations (S.15), but equation (S.19) serves as a qualitative approximation near

the frequency range of interest, because the far-away resonances do not contribute much, the non-

radiative loss is small, and the Fresnel reflection between the dielectric layers (liquid, Si3N4, silica,

and silicon) is small. So, we can still see the general trend that the reflectivity peaks follow the

eigenvalues of Ω (as evident by comparing Fig. S3 and Fig. S6b), and we can still see reflectivity

dips for CRIT (such as in Fig. 3a).
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FIG. S1: Simulation results of the complex eigenvalues of the PhC slabs with and without

accidental degeneracy. The real (upper panels) and imaginary (lower panels) parts of the complex

eigenvalues are shown for structures with (b) and without (a, c) accidental degeneracy. The bands

with quadrapole modes in the middle of the Brillouin zone are shown in red solid lines, while the

bands with the dipole mode are shown in blue solid lines and gray dashed lines. The bands shown

in red and blue solid lines couple to each other, while the band in gray dashed lines is decoupled

from the other two due to symmetry. When accidental degeneracy happens (at r = rc as shown in

b), the characteristic branching features are observed demonstrating the existence of EPs. When

the accidental degeneracy is lifted, the quadrupole band splits from the dipole bands from different

directions: from the bottom when radius of the holes is too small (r < rc as shown in a), or from

the top when the radius is too big (r > rc as shown in c).
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FIG. S2. Existence of EP along every direction in the momentum space for the realistic

PhC slab structure. a, A loop is created in the parameter space of the structure (A→ B → C →

D → A), which does not enclose the EP of the system (point Ep). Here, r is the radius of the

air holes, and kx,y are the in-plane wavevectors. b, For each point along the loop, we numerically

calculate the eigenvalues of the PhC slab with the corresponding hole radius at the corresponding

in-plane wavevector. c, The complex eigenvalues return to their initial positions at the end of the

loop (namely, the blue dot and the red dot come back to themselves) when the system parameters

come back to point A. d,e,f, Another loop is created (A′ → B′ → C ′ → D′ → A′), which

encloses an EP of the system (the same point Ep as in a.). Following this new loop, the two

eigenvalues switch their positions at the end of the loop (namely, the blue dot and the red dot

switch their positions) when the system parameters come back to point A′. g,h, The two complex

eigenvalues always switch their positions when we choose the right loops along other directions in

the momentum space (Γ to N in g and Γ to M in h).
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Reflectivity spectrum
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FIG. S3: Experimental results of reflectivity showing an accidental Dirac cone. Light with

different polarizations (s and p) is selected to excite different resonances of the PhC slab along

different directions in the k space. Depending on the choice of polarization, the two bands forming

the conical dispersion are excited (s-polarized along Γ-X and p-polarized along Γ-M, shown in the

left panel), or the flat band in the middle is excited (p-polarized along Γ-X and s-polarized along

Γ-M, shown in the right panel).
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FIG. S4: Experimental results of reflectivity from PhC slabs with and without accidental

degeneracy. Angle-resolved reflectivity along the Γ to X direction, measured for three different

PhC slabs: a, with smaller hole radius than the structure with accidental degeneracy (r < r′); b,

with accidental degeneracy (r = r′); c, with bigger hole radius than the structure with accidental

degeneracy (r > r′). The reflectivity peaks of the structures without accidental degeneracy (a,c)

follow quadratic dispersions; while the reflectivity peaks of the structure with accidental degen-

eracy (b) follow linear Dirac dispersion. Data shown in (b) is the same data as in Fig. 2c the left

panel of Fig. S3.
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FIG. S5: Illustrative reflectivity spectrum from one resonance and from two coupled reso-

nances. a, When a single resonance dominates, the reflectivity peak is at the same position as the

real part of the complex eigenvalue. b, With two coupled resonances, the reflectivity peaks (red

arrows) no longer follow the eigenvalues of the system (blue circles). As we vary the radiation loss

γ1,2 of the two resonances while fixing the eigenvalues Ω1,2 of the Hermitian matrix, we see the

complex eigenvalues vary whereas the reflectivity peaks are fixed. The middle panel of (b) shows

a situation when the two complex eigenvalues coalesce into an EP.
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a) Experiment Coupled-Mode Theory
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FIG. S6: TCMT fitting and visualization of accidental Dirac cone. a, Examples of reflection

spectrum measured at five different incident angles (0◦, 0.14◦, 0.24◦, 0.5◦ and 1◦) along the Γ-

X direction for s polarization, with comparison to the TCMT expression in equation (S.15) after

fitting. Dotted lines indicate the resonances, with the two relevant resonances marked in red and

blue. b, Parameters obtained from the TCMT fitting. The eigenvalues for the Hermitian part of

the Hamiltonian, Ω1,2, are shown in the left panel and reveal the Dirac dispersion arising from

accidental degeneracy. The diagonal terms for the anti-Hermitian part of the Hamiltonian, γ1,2,

are shown in the right panel. Note that the anti-Hermitian part of the Hamiltonian also has off-

diagonal terms, so Ω1,2 and γ1,2 are not the eigenvalues of the Hamiltonian. The eigenvalues of the

Hamiltonian are shown in Fig. 3 of the main text.
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