1,166 research outputs found

    Disruption of glycerol metabolism by RNAi targeting of genes encoding glycerol kinase results in a range of phenotype severity in Drosophila.

    Get PDF
    In Drosophila, RNAi targeting of either dGyk or dGK can result in two alternative phenotypes: adult glycerol hypersensitivity or larval lethality. Here we compare these two phenotypes at the level of glycerol kinase (GK) phosphorylation activity, dGyk and dGK-RNA expression, and glycerol levels. We found both phenotypes exhibit reduced but similar levels of GK phosphorylation activity. Reduced RNA expression levels of dGyk and dGK corresponded with RNAi progeny that developed into glycerol hypersensitive adult flies. However, quantification of dGyk/dGK expression levels for the larval lethality phenotype revealed unexpected levels possibly due to a compensatory mechanism between dGyk and dGK or RNAi inhibition. The enzymatic role of glycerol kinase converts glycerol to glycerol 3-phosphate. As expected, elevated glycerol levels were observed in larvae that went on to develop into glycerol hypersensitive adults. Interestingly, larvae that died before eclosion revealed extremely low glycerol levels. Further characterization identified a wing phenotype that is enhanced by a dGpdh null mutation, indicating disrupted glycerol metabolism underlies the wing phenotype. In humans, glycerol kinase deficiency (GKD) exhibits a wide range of phenotypic variation with no obvious genotype-phenotype correlations. Additionally, disease severity often does not correlate with GK phosphorylation activity. It is intriguing that both human GKD patients and our GKD Drosophila model show a range of phenotype severity. Additionally, the lack of correlation between GK phosphorylation and dGyk/dGK-RNA expression with phenotypic severity suggests further study including understanding the alternative functions of the GK protein, could provide insights into the complex pathogenic mechanism observed in human GKD patients

    Fine-scale movements and behaviors of coyotes (Canis latrans) during their reproductive period

    Get PDF
    In canids, resident breeders hold territories but require different resources than transient individuals (i.e., dispersers), which may result in differential use of space, land cover, and food by residents and transients. In the southeastern United States, coyote (Canis latrans) reproduction occurs during spring and is energetically demanding for residents, but transients do not reproduce and therefore can exhibit feeding behaviors with lower energetic rewards. Hence, how coyotes behave in their environment likely differs between resident and transient coyotes. We captured and monitored 36 coyotes in Georgia during 2018–2019 and used data from 11 resident breeders, 12 predispersing residents (i.e., offspring of resident breeders), and 11 transients to determine space use, movements, and relationships between these behaviors and landcover characteristics. Average home range size for resident breeders and predispersing offspring was 20.7 ± 2.5 kmÂČ and 50.7 ± 10.0 kmÂČ, respectively. Average size of transient ranges was 241.4 ± 114.5 kmÂČ. Daily distance moved was 6.3 ± 3.0 km for resident males, 5.5 ± 2.7 km for resident females, and 6.9 ± 4.2 km for transients. We estimated first-passage time values to assess the scale at which coyotes respond to their environment, and used behavioral change-point analysis to determine that coyotes exhibited three behavioral states. We found notable differences between resident and transient coyotes in regard to how landcover characteristics influenced their behavioral states. Resident coyotes tended to select for areas with denser vegetation while resting and foraging, but for areas with less dense vegetation and canopy cover when walking. Transient coyotes selected areas closer to roads and with lower canopy cover while resting, but for areas farther from roads when foraging and walking. Our findings suggest that behaviors of both resident and transient coyotes are influenced by varying landcover characteristics, which could have implications for prey

    Mechanisms of Hearing Loss after Blast Injury to the Ear

    Get PDF
    Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the bodys most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction

    A Daphnane Diterpenoid Isolated from Wikstroemia polyantha Induces an Inflammatory Response and Modulates miRNA Activity

    Get PDF
    MicroRNAs (miRNAs) are endogenously expressed single-stranded ∌21–23 nucleotide RNAs that inhibit gene expression post-transcriptionally by binding imperfectly to elements usually within the 3â€Čuntranslated region (3â€ČUTR) of mRNAs. Small interfering RNAs (siRNAs) mediate site-specific cleavage by binding with perfect complementarity to RNA. Here, a cell-based miRNA reporter system was developed to screen for compounds from marine and plant extracts that inhibit miRNA or siRNA activity. The daphnane diterpenoid genkwanine M (GENK) isolated from the plant Wikstroemia polyantha induces an early inflammatory response and can moderately inhibit miR-122 activity in the liver Huh-7 cell line. GENK does not alter miR-122 levels nor does it directly inhibit siRNA activity in an in vitro cleavage assay. Finally, we demonstrate that GENK can inhibit HCV infection in Huh-7 cells. In summary, the development of the cell-based miRNA sensor system should prove useful in identifying compounds that affect miRNA/siRNA activity

    Electrochemical Nanoprobes for Single-Cell Analysis

    Get PDF
    The measurement of key molecules in individual cells with minimal disruption to the biological milieu is the next frontier in single-cell analyses. Nanoscale devices are ideal analytical tools because of their small size and their potential for high spatial and temporal resolution recordings. Here, we report the fabrication of disk-shaped carbon nanoelectrodes whose radius can be precisely tuned within the range 5–200 nm. The functionalization of the nanoelectrode with platinum allowed the monitoring of oxygen consumption outside and inside a brain slice. Furthermore, we show that nanoelectrodes of this type can be used to impale individual cells to perform electrochemical measurements within the cell with minimal disruption to cell function. These nanoelectrodes can be fabricated combined with scanning ion conductance microscopy probes, which should allow high resolution electrochemical mapping of species on or in living cells

    Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes

    Get PDF
    Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat
    • 

    corecore