28 research outputs found

    Efecto del abono foliar de vísceras de pescado en el rendimiento del cultivo de la fresa (Fragaria Vesca), Puente Piedra, Lima 2021

    Get PDF
    La presente tesis, tuvo como finalidad, minimizar, aprovechar y evaluar la influencia del abono liquido producido por residuos de vísceras de pescado obtenidos en distintos mercados de la zona de Puente Piedra, se presenta una solución de disposición final, considerando sus características físicas, químicas y biológicas aplicado en el cultivo de fresa. Se utilizaron tres tratamientos de abono foliar líquido, procesado mediante un sistema anaeróbico por un período de 42 días. Finalizando este proceso de fermentación se obtuvo una muestra por cada tipo de tratamiento, los cuales fueron enviados a un laboratorio para sus respectivos estudios. El tipo de investigación fue experimental, con un diseño completamente al azar (DCA), aplicado en tres tratamientos distintos y tres repeticiones; se usó el tratamiento T1 con 12 Kg de vísceras de pescado, T2 con 18 Kg. de vísceras de pescado, T3 con 30 Kg de vísceras de pescado, obteniendo como resultado que el T2 fue el mejor al obtener mayor cantidad de NPK en el biol y desarrollando mejor en el crecimiento y desarrollo de la fresa. Se recomienda usar el abono foliar de vísceras de pescado para la fresa y demás cultivos

    Anti-inflammatory, antioxidant, antihypertensive, and antiarrhythmic effect of indole-3-carbinol, a phytochemical derived from cruciferous vegetables

    Get PDF
    Background: Cardiovascular inflammation and oxidative stress are determining factors in high blood pressure and arrhythmias. Indole-3-carbinol is a cruciferous-derived phytochemical with potential anti-inflammatory and antioxidant effects. However, its implications on the modulation of cardiovascular inflammatory-oxidative markers are unknown. Objectives: To establish the effects of indole-3-carbinol on the oxidative-inflammatory-proarrhythmic conditions associated with hypertension. Materials: Histological, biochemical, molecular, and functional aspects were evaluated in 1) Culture of mouse BV-2 glial cells subjected to oxidative-inflammatory damage by lipopolysaccharides (100 ng/mL) in the presence or absence of 40 μM indole-3-carbinol (n = 5); 2) Male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats receiving indole-3-carbinol (2000 ppm/day, orally) during the first 8 weeks of life (n = 15); 3) Isolated rat hearts were submitted to 10 min regional ischemia and 10 min reperfusion. Results: 1) lipopolysaccharides induced oxidative stress and increased inflammatory markers; indole-3-carbinol reversed both conditions (interleukin 6, tumor necrosis factor α, the activity of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide, inducible nitric oxide synthase, heat shock protein 70, all p < 0.01 vs lipopolysaccharides). 2) SHR rats showed histological, structural, and functional changes with increasing systolic blood pressure (154 ± 8 mmHg vs. 122 ± 7 mmHg in Wistar Kyoto rats, p < 0.01); Inflammatory-oxidative markers also increased, and nitric oxide and heat shock protein 70 decreased. Conversely, indole-3-carbinol reduced oxidative-inflammatory markers and systolic blood pressure (133 ± 8 mmHg, p < 0.01 vs. SHR). 3) indole-3-carbinol reduced reperfusion arrhythmias from 8/10 in SHR to 0/10 (p = 0.0007 by Fisher's exact test). Conclusions: Indole-3-carbinol reduces the inflammatory-oxidative-proarrhythmic process of hypertension. The nitric oxide and heat shock protein 70 are relevant mechanisms of indole-3-carbinol protective actions. Further studies with this pleiotropic phytochemical as a promising cardioprotective are guaranteed.Fil: Prado, Natalia Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Ramirez, Daniela Andrea. Laboratorio de Cromatografía Para Agroalimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Mazzei, Luciana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Parra, Micaela. Universidad Nacional de Cuyo; ArgentinaFil: Casarotto, Mariana. Universidad Nacional de Cuyo; ArgentinaFil: Calvo, Juan Pablo. Universidad Nacional de Cuyo; ArgentinaFil: Cuello Carrión, Fernando Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Ponce Zumino, Amira Zulma. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Diez, Emiliano Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Camargo, Alejandra Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; ArgentinaFil: Manucha, Walter Ariel Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina. Universidad del Aconcagua. Facultad de Ciencias Médicas; Argentin

    Evolutionary genomics of a cold-adapted diatom: Fragilariopsis cylindrus

    Get PDF
    The Southern Ocean houses a diverse and productive community of organisms1, 2. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice3, 4, 5, 6, 7. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus8, 9, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Food risk behaviors and self-concept in followers of influencers from Metropolitan Lima

    No full text
    Las conductas alimentarias de riesgo (CAR) tienen mayor ocurrencia en la adultez temprana y generan un impacto negativo en el autoconcepto; el cual puede verse afectado en el escenario de las redes sociales producto de las interacciones con influencers. El objetivo del estudio fue evidenciar la relación entre el autoconcepto y las CAR en 258 mujeres de Lima Metropolitana seguidoras de influencers entre las edades de 19 a 25 años. Para medir las variables se utilizó la Escala Cuestionario de Actitudes ante la Alimentación (EAT-26) y el Cuestionario de Autoconcepto de Garley (CAG). Los resultados del estudio evidencian que el autoconcepto tiene una relación significativa y negativa con las tres dimensiones de la escala EAT-26: dieta (rho = -.37; p < .01), bulimia (rho = -.32; p < .01) y control oral (rho = -.29; p < .01). Se evidencia que las participantes que presentan un mayor nivel de autoconcepto a su vez experimentan menores niveles de preocupación por la dieta, menores niveles de bulimia y menores niveles de problemas de control oral en la ingesta de alimentos.Risky eating behaviors (REB) occur more in early adulthood and generate a negative impact on self-concept; which can be affected in the social media scenario as a result of interactions with influencers. The objective of the study was to demonstrate the relationship among self-concept and REB in 258 women between the ages of 19 to 25 years from Metropolitan Lima who followed influencers. To measure the variables, the Eating Attitudes Questionnaire Scale (EAT-26) and the Garley Self-Concept Questionnaire (CAG) were used. The results of the study show that self-concept has a significant and negative relationship with the three dimensions of the EAT-26 scale: diet (rho = -.37; p < .01), bulimia (rho = -.32; p < . 01) and oral control (rho = -.29; p < .01). It is evident that participants who present a higher level of self-concept experience lower levels of concern about diet, bulimia and oral control problems in food intake.Tesi

    El peso de los atributos del producto sobre las evaluaciones de semejanza y preferencia

    No full text
    Este estudio evaluó el efecto de los diferentes atributos del producto sobre los juicios de similitud y preferencia en tres tipos de artículos. Se utilizó un diseño intrasujeto con tres condiciones de producto y en cada una de ellas se midieron los juicios de similitud y preferencia en una escala de orden. Para derivar cada perfil de producto se extrajeron atributos físicos, beneficios de uso e imagen y se combinaron factorialmente hasta conformar 24 perfiles por categoría. A través de un análisis conjunto y de un MANOVA para medidas repetidas se encontró que contrario a las hipótesis de trabajo, los atributos físicos se relacionaron más con la preferencia en dos categorías de producto, los beneficios de uso con las tareas de similitud en una categoría y la imagen del artículo sirvió para establecer semejanza en una clase. Los resultados pueden explicarse por la inclusión de una fase exploratoria, el número de perfiles y la dificultad de la tarea

    Liolaemus morandae Breitman, Parra, Pérez & Sites, 2011, sp. nov.

    No full text
    &lt;i&gt;Liolaemus morandae&lt;/i&gt; sp. nov. &lt;p&gt;(Figure 3&ndash;6)&lt;/p&gt; &lt;p&gt; &lt;b&gt;2001&lt;/b&gt;, &lt;i&gt;Liolaemus lineomaculatus,&lt;/i&gt; Ibarg&uuml;engoyt&iacute;a, N., Casalins, L., Schulte II, J.A., Amico, G.A. and Sympson, L., &lt;i&gt;Herpetological Review&lt;/i&gt;, 32, 120.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Holotype.&lt;/b&gt; MLP.S 2626 (Figure 3), an adult male from Provincial Road 37, 22.8 km SW junction National Road 3, Escalante department, Chubut province, Argentina (45&deg;41&rsquo;10,6&rdquo; S; 67&deg;53&rsquo;49,9&rdquo; W, 693 m) (Figures 4, 5); L.J. Avila, M. Kozykariski, M.F. Breitman and R. Martinez collectors, 12th March 2010.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Paratypes.&lt;/b&gt; LJAMM-CNP 13020, adult female and LJAMM-CNP 13021, juvenile; same locality as holotype. LJAM-CNP 9677-9679, adult females and LJAMM-CNP 9680, juvenile; from Holdich station, Escalante department, Chubut province, Argentina (45&ordm;58&rsquo;00.1&rdquo; S; 68&ordm;11&rsquo;58.8&rdquo; W, 761 m); L.J. Avila, C.H.F. P&eacute;rez, M.F. Breitman and N. Feltrin collectors, 2nd February 2008. LJAMM-CNP 10201, adult male and LJAM-CNP 10202, juvenile; from Provincial Road 37, 2.5 km W junction National Road 3, Escalante department, Chubut province, Argentina (45&ordm;37&rsquo;43.4&rdquo; S; 67&ordm;41&rsquo;03.6&rdquo; W, 637 m); L.J. Avila, C.H.F. P&eacute;rez, M.F. Breitman and N. Feltrin collectors, 2 nd February 2008.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Diagnosis.&lt;/b&gt; &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; is a member of the &lt;i&gt;L. lineomaculatus&lt;/i&gt; section, included in the &lt;i&gt;lineomaculatus&lt;/i&gt; group, and is characterized by the absence of precloacal pores in both sexes, and presence of dorsal trifid scales (Etheridge 1995). Molecular evidence includes this species in the &lt;i&gt;lineomaculatus&lt;/i&gt; group, closely related to the clade (&lt;i&gt;L. sp.&lt;/i&gt; 2 + &lt;i&gt;L. lineomaculatus&lt;/i&gt;) Figure 1. All the following differences are summarized in Tables 1 to 4 and in Figure 6.&lt;/p&gt; &lt;p&gt; Relative to &lt;i&gt;L. lineomaculatus&lt;/i&gt;, &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; has fewer dorsal scales (47&ndash;57, X = 51.67 vs. 52&ndash;68, X = 58.41; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), fewer third finger lamellae (13&ndash;16, X = 15.33 vs. 14&ndash;19, X = 16,18; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), shorter fourth toe length (13.4&ndash;16.8, X = 14.9 vs. 12.6&ndash;16.1, X = 14.09; &lt;i&gt;p&lt;/i&gt; &lt;0.0001) and a larger eye (eye height: 1.7&ndash;2.27, X = 1.99 vs. 1.5&ndash;2.21, X = 1.84, eye length: 2.91&ndash;3.42, X = 3.15 vs. 2.35&ndash;3.3, X = 2.83; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases). &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; has more dorsal blotches than &lt;i&gt;L. lineomaculatus,&lt;/i&gt; and the blotches in &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; have (in 50% of the cases) a yellow-orange coloration while &lt;i&gt;L. lineomaculatus&lt;/i&gt; blotches have dark gray color.&lt;/p&gt; &lt;p&gt; In general, dorsal scales of &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; are more mucronated than those of &lt;i&gt;L. lineomaculatus,&lt;/i&gt; and dorsal leg scales of &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; are less carinated with respect to &lt;i&gt;L. lineomaculatus&lt;/i&gt;.&lt;/p&gt; &lt;p&gt; Compared to &lt;i&gt;L. hatcheri, L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; has higher number of midbody scales (55&ndash;63, X = 59.83 vs. 43&ndash;57, X = 48.65 &lt;i&gt;p&lt;/i&gt; &lt;0.0001), larger number of scales from occiput to rump (47&ndash;57, X = 51.67 vs. 43&ndash;55, X = 48.75; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), more ventral scales (79&ndash;85, X = 81.33 vs. 62&ndash;74, X = 67.8; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), more fourth toe lamellae (18&ndash;23, X = 21.17 vs. 18&ndash;22, X = 19.45; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), smaller body size (snout-vent length: 50&ndash;61, X = 55.67 vs. 55&ndash;69, X = 61.89, axilla-groin distance: 19.7&ndash;30.8, X = 25.9 vs. 19.5&ndash;35.5, X = 28.95; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases), shorter forelimbs (elbow-wrist length: 4.69&ndash;5.56, X = 5.32 vs. 5.67&ndash;7.33, X = 6.44, third finger length: 6.69&ndash;9.14, X = 7.83 vs. 8.5&ndash;10.57, X = 9.15; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases), smaller head (head width: 9.08&ndash;10.58, X = 9.84 vs. 9.7&ndash;13.05, X = 11.22, head length: 10.96&ndash;13.06, X = 11.96 vs. 11.43&ndash;14.65, X = 12.97; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases), and smaller auditory meatus (auditory meatus height: 1.6&ndash;2.44, X = 1.95 vs. 1.85&ndash;2.61, X = 2.15; auditory meatus length: 0.86&ndash;1.81, X = 1.27 vs. 1.38&ndash;2.16, X = 1.77; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases). &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; has more dorsal blotches and better defined vertebral and paravertebral lines than &lt;i&gt;L. hatcheri;&lt;/i&gt; ventral melanism is more pronounced in &lt;i&gt;L. hatcheri,&lt;/i&gt; while &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; has fewer melanophores. Dorsal scales of &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; are less &ldquo;bristly&rdquo; than those of &lt;i&gt;L. hatcheri.&lt;/i&gt; Dorsal and ventral limb scales are non-mucronate and carinate in &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; while in &lt;i&gt;L. hatcheri&lt;/i&gt; they are mucronate and non-carinate. Belly scales are round-shaped in &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; and rhomboidal in &lt;i&gt;L. hatcheri&lt;/i&gt;.&lt;/p&gt; &lt;p&gt; &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; differs from &lt;i&gt;L. kolengh&lt;/i&gt; in the following traits: larger number of midbody scales (55&ndash;63, X = 59.83 vs. 44&ndash;55, X = 50.55; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), larger number of scales from occiput to rump (47&ndash;57, X = 51.67 vs. 44&ndash;54, X = 49.35; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), more ventral scales (79&ndash;85, X = 81.33 vs. 61&ndash;76, X = 68.58; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), larger number of fourth toe lamellae (18&ndash;23, X = 21.17 vs. 16&ndash;22, X = 18.74; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), shorter forelimbs (elbow-wrist length: 4.69&ndash;5.56, X = 5.32 vs. 4.6&ndash;7.03, X = 6.16, third finger length: 6.69&ndash;9.14, X = 7.83 vs. 8.31&ndash; 11.12, X = 9.65; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases), smaller auditory meatus (auditory meatus height: 1.6&ndash;2.44, X = 1.95 vs. 1.63&ndash;2.95, X = 2.22, auditory meatus length: 0.86&ndash;1.81, X = 1.27 vs. 1.22&ndash;2.24, X = 1.67; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases) and longer tail (61&ndash;79, X = 70.33 vs. 47&ndash;70, X = 60.52; &lt;i&gt;p&lt;/i&gt; = 0.0019). &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; has more dorsal blotches and better defined vertebral and paravertebral lines than &lt;i&gt;L. kolengh;&lt;/i&gt; ventral melanism is stronger in &lt;i&gt;L. kolengh&lt;/i&gt; than in &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt;; the general background coloration of &lt;i&gt;L. kolengh&lt;/i&gt; is dark gray or black, though in almost 50% of our samples the dorsal pattern cannot be recognized. In general, the dorsal scales of &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; are less &ldquo;bristly&rdquo; than those of &lt;i&gt;L. kolengh.&lt;/i&gt; Dorsal and ventral limbs scales are non-mucronate and non-bristly in &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt;, but mucronate and &ldquo;bristly&rdquo; in &lt;i&gt;L. kolengh&lt;/i&gt;.&lt;/p&gt; &lt;p&gt; &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; differs from &lt;i&gt;L. silvanae&lt;/i&gt; in several characters, including: a smaller number of scales from occiput to rump (47&ndash;57, X = 51.67 vs. 52&ndash;64, X = 56; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), higher number of ventral scales (79&ndash;85, X = 81.33 vs. 70&ndash;85, X = 74,59; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), fewer third finger lamellae (13&ndash;16, X = 15.33 vs. 14&ndash;18, X = 16.24; &lt;i&gt;p&lt;/i&gt; &lt;0.0001), smaller body size (snout-vent length: 50&ndash;61, X = 55.67 vs. 65&ndash;78, X = 73, axilla-groin distance: 19.7&ndash;30.8, X = 25.9 vs. 25.1&ndash;39.7, X = 32.38; p&lt;0.0001 in both cases), shorter forelimbs (elbow-wrist length: 4.69&ndash;5.56, X = 5.32 vs. 6.83&ndash;8.82, X = 7.71, third finger length: 6.69&ndash;9.14, X = 7.83 vs. 10.65&ndash;13.76 X = 12.23; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases), smaller head (head height: 6.52&ndash;8.21, X = 7.23 vs. 6.84&ndash;9.06, X = 8.18, head width: 9.08&ndash;10.58, X = 9.84 vs. 11.31&ndash;14.71, X = 13.14, head length: 10.96&ndash;13.06, X = 11.96 vs. 12.47&ndash;15.9, X = 14.42; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in all cases), smaller eye (eye height: 1.7&ndash;2.27, X = 1.99 vs. 2.09&ndash;2.9, X = 2.46, eye length: 2.91&ndash;3.42, X = 3.15 vs. 3.59&ndash;4.18, X = 3.86; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases), and smaller auditory meatus (auditory meatus height: 1.6&ndash;2.44, X = 1.95 vs. 1.95&ndash;2.95, X = 2.54; auditory meatus length: 0.86&ndash;1.81, X = 1.27 vs. 1.49&ndash; 2.57, X = 2.04; &lt;i&gt;p&lt;/i&gt; &lt;0.0001 in both cases). The general background coloration of &lt;i&gt;L. silvanae&lt;/i&gt; is black; there is no recognizable dorsal pattern, and the venter is also strongly melanistic, whereas the venter is weakly melanistic in &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov&lt;/b&gt;. &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; possesses well-defined vertebral and paravertebral lines that are not present in &lt;i&gt;L. silvanae.&lt;/i&gt; In general, &lt;i&gt;L. silvanae&lt;/i&gt; possesses a &ldquo;bristly&rdquo; appearance that is not present in &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov&lt;/b&gt;. Limb scales are less mucronated in &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; than in &lt;i&gt;L. silvanae&lt;/i&gt;.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Description of holotype.&lt;/b&gt; Adult male. Snout-vent length 56.0 mm. Tail length (complete, not regenerated) 79.0 mm. Axilla-groin distance 22.8 mm. Auditory meatus-eye distance 4.8 mm. External auditory meatus conspicuous, higher (2.1 mm) than wide (1.2 mm). Head length 13.0 mm (from anterior border of tympanum to tip of snout), 10.5 mm wide (at anterior border of tympanum), 7.8 mm high (at anterior border of tympanum). Snout length 4.0 mm (orbit-tip of snout distance). Interorbital distance 4.2 mm. Eye-nostril distance 3.1 mm. Forelimb length 16.7 mm. Tibial length 10.3 mm. Foot length 16.8 mm (ankle to tip of claw on fourth toe).&lt;/p&gt; &lt;p&gt;Dorsal head scales bulged, smooth, 15 between occiput, at the level of anterior border of tympanum, to rostral, pitted with numerous scale organs in the anterior region, and reducing to a single organ, or lack, in the posterior half of the head. Rostral scale wider (2.4 mm) than high (0.9 mm). Two postrostrals, together with anterior lorilabial, separate nasal scales from rostral, surrounded by six scales. Nasal scales longer than wide, irregularly hexagonal; nostril one-half length of nasal, posterior in position. Scales surrounding nasals 7 on the left side and 8 on the right side. Four internasals. Frontonasals six, irregular in size and position. Prefrontals 6, a small rhomboidal scale in the center (0.9 mm). Three dorso-lateral larger scales, one for the fragmentation of the right scale, and a pair lateral medium-sized scales (1.3 mm), approximately quadrangular. Two frontal scales. Frontoparietals in two rows, one anterior and one posterior scale, unfragmented. Interparietal pentagonal, surrounded by six scales; four smaller and irregular in front and sides, two larger in back. Parietal eye evident. Parietals slightly bulged, irregularly shaped, equal in size to interparietal (1.5 vs. 1.5 mm). Circumorbitals:13&ndash;10. Transversally expanded supraoculars 4&ndash;3. Smaller lateral supraoculars: 16&ndash;17. One canthal higher than wide, separated from nasal by one postnasal. Loreal scales bulged, two on the left side (by fusion of the posterior loreal scale with preocular scale) and three on the rigth side. Lorilabials longer than wide (8&ndash;6), approximately equal to labials. Superciliaries 7&ndash;7, flattened and elongated, anterior five broadly overlapping dorsally. Orbit with 15&ndash;17 upper and 12&ndash;13 lower ciliaries on each side. Orbit diameter 4.5 x 1.9 mm. Preocular small, unfragmented, longer than wide. Subocular scale elongated, approximately nine times longer than wide (3.7 x 0.6 mm). A well marked longitudinal ridge along upper margin of preocular and subocular scales. Postocular small, slightly bulged, quarter superimposed to subocular, with a marked longitudinal ridge. Palpebral scales small granular and bulged. Supralabials 9&ndash;10, convex. Temporals smooth, convex, juxtaposed with one scale organ in the tip. Anterior auriculars smaller than adjacent posterior temporals, slightly projecting outward (3&ndash;2). Posterior auriculars small and granular. External auditory meatus conspicuous, higher (2.1 mm) than wide (1.2 mm). Lateral scales of neck granular with inflated skin. Mental scale wider (2.9 mm) than high (1.4 mm), in contact with four scales. Mental posterior followed by two postmentals, and two rows of three chinshields on each side. Six infralabials on each side, first on each side quadrangular two times wider than supralabials, all others elongated, slightly smaller than supralabials. Gular scales smooth, flat, imbricate, with rounded posterior margins, with melanophores. Scales of throat between chinshields slightly juxtaposed, becoming slightly imbricate toward auditory meatus. Thirty gulars between tympanum openings. Infralabials separated from chinshields by one to two rows of scales.&lt;/p&gt; &lt;p&gt;Antehumeral, longitudinal and postauricular neck folds well developed; gular, rictal, dorsolateral and oblique not conspicuous.&lt;/p&gt; &lt;p&gt;Scales of dorsal neck region rhomboidal, imbricate and strongly keeled. Fifty dorsal scales between occiput and anterior surface of thighs. Dorsal body scales rhomboidal, imbricate, strongly keeled, mucronate, very few trifid scales. Dorsal scales grade laterally into slightly smaller, slightly keeled scales at midbody. Scales immediately anterior and posterior to forelimb and hindlimb insertion small, smooth, granular, and non-overlapping. Body lateral scales grading smaller to larger at midbody. Ventral body scales rhomboidal, smooth, flat, imbricate, larger than dorsal scales. Sixty-one midbody scales; scales between mental and precloacal pores 85. Scales of cloacal region about equal in size to ventral body scales; without precloacal pores.&lt;/p&gt; &lt;p&gt;Anterior suprabrachials rhomboidal, imbricate, smooth, slightly larger in size to dorsal body scales. Postabrachials smaller, smooth, becoming granular near axilla. Supra-antebrachials similar to suprabrachial. Infra-antebrachials rhomboidals, imbricate, smooth, toward the hand slightly mucronate. Supracarpals imbricated, rhomboidal, smooth. Infracarpals strongly imbricate, rhomboidal, slightly keeled, 3-mucronate. Subdigital lamellae with 2&ndash;5 keels, each terminating in a short mucron, 2&ndash;5 mucronate, numbering: I: 8, II: 12, III: 16, IV: 17, V: 11. Claws robust, curved and sharp, opaque brown.&lt;/p&gt; &lt;p&gt;Suprafemorals as large as dorsal body scales, rhomboidal, imbricated, smooth near the body, toward to the knee slightly keeled. Postfemorals small, granular shape. Supratibials rhomboidal, imbricated, keeled, some mucronate, smaller and smooth toward to the foot. Infrafemoral scales small, granular and smooth. Supratarsals rhomboidal, imbricated and smooth. Infratarsals small, rhomboidal, imbricate, smooth, mucronate, slightly keeled near the digit. Subdigital scales 1&ndash;3 keeled, 1&ndash;5 mucronate, numbering: I: 9, II: 14, III: 20, IV: 21, V: 14. Claws robust, curved and sharp, opaque brown. Tail complete, non-regenerated. Dorsal and lateral caudal scales, rhomboidal in the first half of the tail, becoming quadrangular toward the tip, strongly keeled. Ventrals subtriangular and smooth, toward posterior half moderate keeled.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Color of holotype in life.&lt;/b&gt; Dark grey dorsal background (Figure 3) that becomes lighter on the lateral region, between axilla and groin. Dorsal pattern presents twelve paravertebral, quadrangular, black blotches, extending from the nuchal to the postcloacal region, those series fuse into a dark line that is present to the tip of the tail. Dorsolateral region, in between the occipital and the tip of the tail, formed by black and white-bordered blotches. Lateral region, between axilla and groin, is characterized by a black and white reticulate pattern. In between the series of blotches, one white vertebral line and two light orange paravertebral longitudinal lines appear, one and one and a half scale wide, respectively. Vertebral line extends from the nuchal region, while the paravertebral lines extend from the temporal region; all of them continue to the tip of the tail. Dorsal region of the limbs are dark gray with a black reticulation.&lt;/p&gt; &lt;p&gt;Dark gray head background. Lateral white line along the longitudinal folds is present from the top of the auditory meatus to the antehumeral fold. White subocular scale with black longitudinal ridge. Dorsal surface with black blotches, one longitudinal blotch is present in the anterior part of the head, crossing through internasals, postnasals and prefrontals; two transverse blotches are crossing through postfrontals and first circumorbitals, and extend back to the last circumorbitals, forming a cross with the longitudinal blotch. The interparietal scale is surrounded by three small dark-brown blotches and the occipitals show a white longitudinal band of the same color.&lt;/p&gt; &lt;p&gt;White ventral color with a black reticulate pattern over the entire body, most strongly marked in the pectoral region and throat, and extending to the adjacent malar and maxilla region. Ventral scales with melanophores. Ventral area of chest, belly, cloacal region and limbs tinged with a light yellowish color. Cloacal and postcloacal region with few black blotches. Gray tail.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Color of holotype in preservative.&lt;/b&gt; After one year in preservative, the dorsal coloration of the head, dorsum, body flanks and tail becomes darker while maintaining the contrast, but the two yellowish paravertebral lines turned gray. Ventral scales of throat, neck, chest, belly and forelimbs retain the same coloration as in life, and the distinctive light ventral yellowish tinge of chest, belly, cloacal region and limbs turns gray (Figure 6).&lt;/p&gt; &lt;p&gt; &lt;b&gt;Variation.&lt;/b&gt; Morphological and meristic character variation between males and females of &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt;, are shown in Table 6. Females in life present basically the same dorsal and lateral pattern as present in males, but females generally have a lighter brown background coloration; vertebral and paravertebral lines are strongly defined, and in both sexes paravertebral lines vary from white to yellow. Ventrally, one male shows a light orange color on the belly, while in other males and all females the ventral region ranged from white to gray due to different degrees of melanism. All distinctive ventral light orange coloration changed to gray in preservative.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Etymology.&lt;/b&gt; The specific epithet of this species &ldquo; &lt;i&gt;morandae&lt;/i&gt; &rdquo; refers to our colleague and the first author&rsquo;s PhD advisor Dr. Mariana Morando, to honor her after more than ten years of research and teaching on the Patagonian herpetofauna.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Distribution.&lt;/b&gt; &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; is known only from the type locality and a few localities on the Pampa del Castillo Plateau; and from three localities from southern Chubut and northern Santa Cruz provinces. The holotype and some paratypes are from Provincial Road 37, 22.8 km SW junction National Road 3, Escalante department, Chubut province, Argentina (Figures 4, 5). The other paratypes are from Provincial Road 37, 2.5 km W junction National Road 3 in Holdich Station, Escalante department, Chubut province, Argentina (Figures 4, 5). The distance from the type locality to the first locality is more than 17.8 km airline, and more than 38.8 km airline to the second locality.&lt;/p&gt; &lt;p&gt; &lt;b&gt;Natural history.&lt;/b&gt; &lt;i&gt;Liolaemus morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; occurs in Patag&oacute;nica province, Golfo de San Jorge District, in environments characterized as grasslands and steppe highlands (Roig 1998), with vegetation dominated by the shrubs &lt;i&gt;Stipa spp&lt;/i&gt;., &lt;i&gt;Senecio filaginoides&lt;/i&gt;, &lt;i&gt;Mulinum spinosum, Nassauvia spp.&lt;/i&gt;, among others. This species was found in open substrates, sharing the habitat with &lt;i&gt;Liolaemus kingii, L. bibronii, Diplolaemus bibronii&lt;/i&gt; and &lt;i&gt;D. darwinii&lt;/i&gt; (Figure 4). Based on the natural history of its close relative &lt;i&gt;L. lineomaculatus,&lt;/i&gt; we hypothesize that &lt;i&gt;L. morandae&lt;/i&gt; &lt;b&gt;sp. nov.&lt;/b&gt; is herbivorous and likely to also be viviparous, perhaps giving birth to between three and six neonates per clut

    Phylogenetic Diversity in Core Region of Hepatitis C Virus Genotype 1a as a Factor Associated with Fibrosis Severity in HIV-1-Coinfected Patients

    Get PDF
    High hepatitis C virus (HCV) genetic diversity impacts infectivity/pathogenicity, influencing chronic liver disease progression associated with fibrosis degrees and hepatocellular carcinoma. HCV core protein is crucial in cell-growth regulation and host-gene expression. Liver fibrosis is accelerated by unknown mechanisms in human immunodeficiency virus-1- (HIV-1-) coinfected individuals. We aimed to study whether well-defined HCV-1a core polymorphisms and genetic heterogeneity are related to fibrosis in a highly homogeneous group of interferon-treated HIV-HCV-coinfected patients. Genetic heterogeneity was weighed by Faith’s phylogenetic diversity (PD), which has been little studied in HCV. Eighteen HCV/HIV-coinfected patients presenting different liver fibrosis stages before anti-HCV treatment-initiation were recruited. Sampling at baseline and during and after treatment was performed up to 72 weeks. At inter/intrahost level, HCV-1a populations were studied using molecular cloning and Sanger sequencing. Over 400 complete HCV-1a core sequences encompassing 573 positions of C were obtained. Amino acid substitutions found previously at positions 70 and 91 of HCV-1b core region were not observed. However, HCV genetic heterogeneity was higher in mild than in severe fibrosis cases. These results suggest a potential utility of PD as a virus-related factor associated with chronic hepatitis C progression. These observations should be reassessed in larger cohorts to corroborate our findings and assess other potential covariates

    Assembly and comparative genome analysis of a Patagonian Aureobasidium pullulans isolate reveals unexpected intraspecific variation

    No full text
    Aureobasidium pullulans is a yeast-like fungus with remarkable phenotypic plasticity widely studied for its importance for the pharmaceutical and food industries. So far, genomic studies with strains from all over the world suggest they constitute a genetically unstructured population, with no association by habitat. However, the mechanisms by which this genome supports so many phenotypic permutations are still poorly understood. Recent works have shown the importance of sequencing yeast genomes from extreme environments to increase the repertoire of phenotypic diversity of unconventional yeasts. In this study, we present the genomic draft of A. pullulans strain from a Patagonian yeast diversity hotspot, re-evaluate its taxonomic classification based on taxogenomic approaches, and annotate its genome with high-depth transcriptomic data. Our analysis suggests this isolate could be considered a novel variant at an early stage of the speciation process. The discovery of divergent strains in a genomically homogeneous group, such as A. pullulans, can be valuable in understanding the evolution of the species. The identification and characterization of new variants will not only allow finding unique traits of biotechnological importance, but also optimize the choice of strains whose phenotypes will be characterized, providing new elements to explore questions about plasticity and adaptation.Fil: Parra, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnologia Nuclear. Instituto de Tecnologias Nucleares Para la Salud.; ArgentinaFil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; ArgentinaFil: Hittinger, Chris Todd. University of Wisconsin; Estados UnidosFil: Alvarez, Lucía Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; ArgentinaFil: Bellora, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Gerencia de Area de Aplicaciones de la Tecnologia Nuclear. Instituto de Tecnologias Nucleares Para la Salud.; Argentin
    corecore