905 research outputs found

    Optimizing efficiency and skill utilization: Analysis of genetic counselors’ attitudes regarding delegation in a clinical setting

    Full text link
    This study assessed genetic counselors’ (GCs) perceptions of delegation as a tool to increase workforce efficiency and help meet the current gap between the number of genetic service providers and the number of patients. GCs were recruited to participate via an online survey that assessed activities (categorized as typical genetic counseling, administrative, or professional development) performed by a clinical genetic counselor. Respondents indicated which activities represent their largest time consumers, their willingness to delegate these activities, and barriers to and perceived outcomes of delegation. Overall, respondents indicated that they spend 25% of their time performing administrative activities that they would largely be willing to delegate; however, respondents were generally unwilling to delegate many typical genetic counseling and professional development activities, citing concerns regarding accuracy and liability, and highlighting the belief that these activities constitute the core role of a genetic counselor. Respondents indicated that delegation of time‐consuming administrative activities would increase access to genetic services and improve job satisfaction. Additionally, differences were identified among clinical specialties regarding which activities were selected as top time consumers, indicating that potential targets of re‐allocation of time or delegation may be variable. This research indicates a need to reduce the number of administrative tasks in which GCs are directly involved to re‐allocate time toward core responsibilities, direct patient care, and professional development, the result of which is more efficient use of the GC skill‐set.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154327/1/jgc41181.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154327/2/jgc41181_am.pd

    A review of varietal change in roots, tubers and bananas: consumer preferences and other drivers of adoption and implications for breeding

    Get PDF
    This review of the literature on varietal change in sub-Saharan Africa looks in detail at adoption of new varieties of bananas in Uganda, cassava in Nigeria, potato in Kenya, sweetpotato in Uganda and yams in C^ote d'Ivoire. The review explored three hypotheses about drivers of varietal change. There was a strong confirmation for the hypothesis that insufficient priority given to consumer-preferred traits by breeding programmes contributes to the limited uptake of modern varieties (MVs) and low varietal turnover. Lack of evidence meant the second hypothesis of insufficient attention to understanding and responding to gender differences in consumer preferences for quality and post-harvest traits was unresolved. The evidence on the third hypothesis about the informal seed system contributing to slow uptake of MVs was mixed. In some cases, the informal system has contributed to rapid uptake of MVs, but often it appears to be a barrier with inconsistent varietal naming a major challenge

    Studying Trail Enhancement Plans - Health Impact Assessment

    Get PDF
    This report reflects work on the Studying Trail Enhancement Plans - Health Impact Assessment (STEP-HIA) for the proposed new Cuba Continental Divide National Scenic Trail segment as of April 30, 2015. It is provided to the Santa Fe National Forest and Bureau of Land Management New Mexico for use in preparing an Environmental Impact Assessment and subsequent planning for the proposed project. It was prepared by the University of New Mexico Prevention Research Center and Step Into Cuba Alliance, a partnership of individuals and organizations dedicated to the promotion of walking and hiking for better health in Cuba, NM. In this report, we present information by way of a sequential series of questions that support and lead to predictions and recommendations for the new trail segment

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin.

    Get PDF
    An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU) mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn), inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing

    Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors

    Get PDF
    Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens. Several neuroectoderm-derived neoplasms, including glioblastoma (GBM), sarcomas, and neuroblastoma, express high levels of the tumor-associated antigen GD2. We have already challenged this cell surface disialoganglioside by a chimeric antigen receptor (CAR)-T cell approach against neuroblastoma. With the intent to maximize the therapeutic profile of MSCs delivering TRAIL, we here originally developed a bi-functional strategy where TRAIL is delivered by MSCs that are also gene modified with the truncated form of the anti-GD2 CAR (GD2 tCAR) to mediate an immunoselective recognition of GD2-positive tumors. These bi-functional MSCs expressed high levels of TRAIL and GD2 tCAR associated with a robust anti-tumor activity against GD2-positive GBM cells. Most importantly, the anti-cancer action was reinforced by the enhanced targeting potential of such bi-functional cells. Collectively, our results suggest that a truncated anti-GD2 CAR might be a powerful new tool to redirect MSCs carrying TRAIL against GD2-expressing tumors. This affinity-based dual targeting holds the promise to combine site-specific and prolonged retention of MSCs in GD2-expressing tumors, thereby providing a more effective delivery of TRAIL for still incurable cancers

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore