1,787 research outputs found
Characterizing the chemical pathways for water formation -- A deep search for hydrogen peroxide
In 2011, hydrogen peroxide (HOOH) was observed for the first time outside the
solar system (Bergman et al., A&A, 2011, 531, L8). This detection appeared a
posteriori quite natural, as HOOH is an intermediate product in the formation
of water on the surface of dust grains. Following up on this detection, we
present a search for HOOH in a diverse sample of sources in different
environments, including low-mass protostars and regions with very high column
densities, such as Infrared Dark Clouds (IRDCs). We do not detect the molecule
in any other source than Oph A, and derive 3 upper limits for the
abundance of HOOH relative to H lower than in Oph A for most sources. This
result sheds a different light on our understanding of the detection of HOOH in
Oph A, and shifts the puzzle to why this source seems to be special. Therefore
we rediscuss the detection of HOOH in Oph A, as well as the implications of the
low abundance of HOOH, and its similarity with the case of O. Our chemical
models show that the production of HOOH is extremely sensitive to the
temperature, and favored only in the range 2030 K. The relatively high
abundance of HOOH observed in Oph A suggests that the bulk of the material lies
at a temperature in the range 2030 K.Comment: 18 pages, 3 figures, invited refereed paper at the Faraday Discussion
16
The evolutionary state of the southern dense core Cha-MMS1
Aims: Our goal is to set constraints on the evolutionary state of the dense
core Cha-MMS1 in the Chamaeleon I molecular cloud. Methods: We analyze
molecular line observations carried out with the new submillimeter telescope
APEX. We look for outflow signatures around the dense core and probe its
chemical structure, which we compare to predictions of models of gas-phase
chemistry. We also use the public database of the Spitzer Space Telescope (SST)
to compare Cha-MMS1 with the two Class 0 protostars IRAM 04191 and L1521F,
which are at the same distance. Results: We measure a large deuterium
fractionation for N2H+ (11 +/- 3 %), intermediate between the prestellar core
L1544 and the very young Class 0 protostar L1521F. It is larger than for HCO+
(2.5 +/- 0.9 %), which is probably the result of depletion removing HCO+ from
the high-density inner region. Our CO(3-2) map reveals the presence of a
bipolar outflow driven by the Class I protostar Ced 110 IRS 4 but we do not
find evidence for an outflow powered by Cha-MMS1. We also report the detection
of Cha-MMS1 at 24, 70 and 160 microns by the instrument MIPS of the SST, at a
level nearly an order of magnitude lower than IRAM 04191 and L1521F.
Conclusions: Cha-MMS1 appears to have already formed a compact object, either
the first hydrostatic core at the very end of the prestellar phase, or an
extremely young protostar that has not yet powered any outflow, at the very
beginning of the Class 0 accretion phase.Comment: Accepted by Astronomy & Astrophysics as a letter, to appear in the
special issue on the APEX first result
Natural and anthropogenic hazards in karst areas of Albania
International audienceIn Albania, about one quarter of the country is occupied by outcroppings of soluble rocks; thus, karst represents an important and typical natural environment. Today karst areas are seriously threatened by a number of hazards, of both natural and anthropogenic origin. Many problems are related to agricultural practices: the use of heavy machinery, ever-increasing in recent years, results at many sites in destruction of the original karst landscapes. Use of pesticides and herbicides, in addition, causes the loss of karst ecosystems of great biological relevance, as has been observed in the Dumre district, where about 80 lakes of karst origin are present in the evaporites of Permian-Triassic age. Agricultural practice performed on slopes with medium to high gradient is a further factor which greatly predispose the slopes to erosion. The cave heritage of Albania (estimated so far in about 1000 caves) is at risk because of the uncontrolled quarrying activities which determine the total or partial destruction of karst caves, including many of naturalistic, archaeological and speleological interest. Many caves have also become sites of illegal disposal of solid and liquid wastes, which causes pollution of the karst ecosystems and of the aquifer therein present, with heavy negative consequences on the quality of water. Even though most of the cases here mentioned are related to anthropogenic activities, the natural hazards, such as subsidence phenomena, floods, and the development of sinkholes, have not to be disregarded
CIB1 protects against MPTP-induced neurotoxicity through inhibiting ASK1.
Calcium and integrin binding protein 1 (CIB1) is a calcium-binding protein that was initially identified as a binding partner of platelet integrin αIIb. Although CIB1 has been shown to interact with multiple proteins, its biological function in the brain remains unclear. Here, we show that CIB1 negatively regulates degeneration of dopaminergic neurons in a mouse model of Parkinson\u27s disease using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Genetic deficiency of the CIB1 gene enhances MPTP-induced neurotoxicity in dopaminergic neurons in CIB1(-/-) mice. Furthermore, RNAi-mediated depletion of CIB1 in primary dopaminergic neurons potentiated 1-methyl-4-phenyl pyrinidium (MPP(+))-induced neuronal death. CIB1 physically associated with apoptosis signal-regulating kinase 1 (ASK1) and thereby inhibited the MPP(+)-induced stimulation of the ASK1-mediated signaling cascade. These findings suggest that CIB1 plays a protective role in MPTP/MPP(+)-induced neurotoxicity by blocking ASK1-mediated signaling
Deuterated formaldehyde in rho Ophiuchi A
From mapping observations of H2CO, HDCO, and D2CO, we have determined how the
degree of deuterium fractionation changes over the central 3'x3' region of rho
Oph A. The multi-transition data of the various H2CO isotopologues, as well as
from other molecules (e.g., CH3OH and N2D+) present in the observed bands, were
analysed using both the standard type rotation diagram analysis and, in
selected cases, a more elaborate method of solving the radiative transfer for
optically thick emission. In addition to molecular column densities, the
analysis also estimates the kinetic temperature and H2 density. Toward the SM1
core in rho Oph A, the H2CO deuterium fractionation is very high. In fact, the
observed D2CO/HDCO ratio is 1.34+/-0.19, while the HDCO/H2CO ratio is
0.107+/-0.015. This is the first time, to our knowledge, that the D2CO/HDCO
abundance ratio is observed to be greater than 1. The kinetic temperature is in
the range 20-30 K in the cores of rho Oph A, and the H2 density is (6-10)x10^5
cm-3. We estimate that the total H2 column density toward the deuterium peak is
(1-4)x10^23 cm-2. As depleted gas-phase chemistry is not adequate, we suggest
that grain chemistry, possibly due to abstraction and exchange reactions along
the reaction chain H2CO -> HDCO -> D2CO, is at work to produce the very high
deuterium levels observed.Comment: 17 pages, 11 figures, accepted for publication in Astronomy &
Astrophysic
Interstellar deuterated ammonia: From NH3 to ND3
We use spectra and maps of NH2D, ND2H, and ND3, obtained with the CSO, IRAM
30m and Arecibo telescopes, to study deuteration processes in dense cores. The
data include the first detection of the hyperfine structure of ND2H. The
emission of ND2H and ND3 does not seem to peak at the positions of the embedded
protostars, but instead at offset positions, where outflow interactions may
occur. A constant ammonia fractionation ratio in star-forming regions is
generally assumed to be consistent with an origin on dust grains. However, in
the pre-stellar cores studied here, the fractionation varies significantly when
going from NH3 to ND3. We present a steady state model of the gas-phase
chemistry for these sources, which includes passive depletion onto dust grains
and multiply saturated deuterated species up to five deuterium atoms (e.g.
CD5+). The observed column density ratios of all four ammonia isotopologues are
reproduced within a factor of 3 for a gas temperature of 10 K. We also predict
that deuterium fractionation remains significant at temperatures up to 20 K. ND
and NHD, which have rotational transitions in the submillimeter domain are
predicted to be abundant.Comment: 14 pages, 12 figures, 12 table
H2CO and CH3OH maps of the Orion Bar photodissociation region
A previous analysis of methanol and formaldehyde towards the Orion Bar
concluded that the two molecular species may trace different physical
components, methanol the clumpy material, and formaldehyde the interclump
medium. To verify this hypothesis, we performed multi-line mapping observations
of the two molecules to study their spatial distributions. The observations
were performed with the IRAM-30m telescope at 218 and 241 GHz, with an angular
resolution of ~11''. Additional data for H2CO from the Plateau de Bure array
are also discussed. The data were analysed using an LVG approach.
Both molecules are detected in our single-dish data. Our data show that CH3OH
peaks towards the clumps of the Bar, but its intensity decreases below the
detection threshold in the interclump material. When averaging over a large
region of the interclump medium, the strongest CH3OH line is detected with a
peak intensity of ~0.06K. Formaldehyde also peaks on the clumps, but it is also
detected in the interclump gas. We verified that the weak intensity of CH3OH in
the interclump medium is not caused by the different excitation conditions of
the interclump material, but reflects a decrease in the column density of
methanol. The abundance of CH3OH relative to H2CO decreases by at least one
order of magnitude from the dense clumps to the interclump medium.Comment: 11 pages, accepted for publication in A&
TIMASSS: The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey. I. Observations, calibration and analysis of the line kinematics
While unbiased surveys observable from ground-based telescopes have
previously been obtained towards several high mass protostars, very little
exists on low mass protostars. To fill up this gap, we carried out a complete
spectral survey of the bands at 3, 2, 1 and 0.8 mm towards the solar type
protostar IRAS16293-2422. The observations covered about 200\,GHz and were
obtained with the IRAM-30m and JCMT-15m telescopes. Particular attention was
devoted to the inter-calibration of the obtained spectra with previous
observations. All the lines detected with more than 3 sigma and free from
obvious blending effects were fitted with Gaussians to estimate their basic
kinematic properties. More than 4000 lines were detected (with sigma \geq 3)
and identified, yielding a line density of approximatively 20 lines per GHz,
comparable to previous surveys in massive hot cores. The vast majority (~2/3)
of the lines are weak and due to complex organic molecules. The analysis of the
profiles of more than 1000 lines belonging 70 species firmly establishes the
presence of two distinct velocity components, associated with the two objects,
A and B, forming the IRAS16293-2422 binary system. In the source A, the line
widths of several species increase with the upper level energy of the
transition, a behavior compatible with gas infalling towards a ~1 Mo object.
The source B, which does not show this effect, might have a much lower central
mass of ~0.1 Mo. The difference in the rest velocities of both objects is
consistent with the hypothesis that the source B rotates around the source A.
This spectral survey, although obtained with single-dish telescope with a low
spatial resolution, allows to separate the emission from 2 different
components, thanks to the large number of lines detected. The data of the
survey are public and can be retrieved on the web site
http://www-laog.obs.ujf-grenoble.fr/heberges/timasss.Comment: 41 pages (26 pages of online Tables), 7 Tables and 6 Figure
Dislocation density and graphitization of diamond crystals
Two sets of diamond specimens compressed at 2 GPa at temperatures varying between 1060 K and 1760 K were prepared; one in which graphitization was promoted by the presence of water and another in which graphitization of diamond was practically absent. X-ray diffraction peak profiles of both sets were analyzed for the microstructure by using the modified Williamson-Hall method and by fitting the Fourier coefficients of the measured profiles by theoretical functions for crystallite size and lattice strain. The procedures determined mean size and size distribution of crystallites as well as the density and the character of the dislocations. The same experimental conditions resulted in different microstructures for the two sets of samples. They were explained in terms of hydrostatic conditions present in the graphitized samples
CO and CH3OH observations of the BHR71 outflows with APEX
Context : Highly-collimated outflows are believed to be the earliest stage in
outflow evolution, so their study is essential for understanding the processes
driving outflows. The BHR71 Bok globule is known to harbour such a
highly-collimated outflow, which is powered by a protostar belonging to a
protobinary system. Aims : We aimed at investigating the interaction of
collimated outflows with the ambient molecular cloud by using molecular
tracers. Methods : We mapped the BHR71 highly-collimated outflow in CO(3-2)
with the APEX telescope, and observed several bright points of the outflow in
the molecular transitions CO(4-3), 13CO(3-2), C18O(3-2), and CH3OH(7-6). We use
an LVG code to characterise the temperature enhancements in these regions.
Results : In our CO(3-2) map, the second outflow driven by IRS2, which is the
second source of the binary system, is completely revealed and shown to be
bipolar. We also measure temperature enhancements in the lobes. The CO and
methanol LVG modelling points to temperatures between 30 and 50K in the IRS1
outflow, while the IRS2 outflow seems to be warmer (up to 300K).Comment: 4 pages, 5 Figures, accepted by A&A Letters, to appear in the APEX
First results special issu
- …
