27 research outputs found

    Atmospheric K-feldspar as a potential climate modulating agent through geologic time

    Get PDF
    Clouds and aerosols have a large, yet highly uncertain, effect on changes in Earth’s climate. A factor of particular note is the role played by ice-nucleating particles, which remains poorly understood. The mineral K-feldspar (Kfs) has recently been shown by a number of independent studies to nucleate ice in mixed-phase cloud conditions far more efficiently than other common minerals. Here, global atmospheric Kfs flux through geologic time is estimated; constrained by records of secular continental crust and biosphere evolution, plate tectonics, volcanism, glaciation, and attendant trends in land surface stability. The analysis reveals that Kfs flux today is at neither extreme of the range estimated across geological time. The present-day Kfs flux, however, is likely to be among the most spatially and temporally variable due to land surface change. The concept of an ice-nucleation efficiency factor that can be calculated from rocks, and also eolian sediments and soils, is proposed. This allows the impact of paleo-atmospheric dust to be estimated through the rock record alongside meteorological and atmospheric composition considerations. With the reasonable assumption that the ice-nucleating properties of Kfs are themselves independent of the background climate state, a better understanding of Kfs flux across a range of spatial and temporal scales will advance understanding of climate processes and interactions

    Non-destructive three-dimensional crystallographic orientation analysis of olivine using laboratory diffraction contrast tomography

    Get PDF
    X-ray laboratory diffraction contrast tomography (LabDCT) produces three-dimensional (3D) maps of crystallographic orientation. The non-destructive nature of the technique affords the key benefit of full 3D context of these, and other, in situ measurements. This study is the first to apply the technique to any material other than a metal or silicon. We report the first 3D measurements of the crystallographic orientation of olivine, which also makes this study the first to apply LabDCT to (1) a non-metallic, non-cubic system and (2) geological material. First, we scanned fragments of olivine set in resin alongside glass microbeads using LabDCT and absorption contrast tomography (ACT). Then we reconstructed these data assuming an orthorhombic crystal system. We show that: (1) the regions within the sample that index well according to the orthorhombic system correspond to olivine fragments in the ACT image; (2) crystalline regions not corresponding to olivine are not indexed assuming the same lattice parameters; and (3) the diffraction data discriminates crystalline from non-crystalline materials as expected. Finally, we demonstrate that the method resolves sub-degree orientation differences between distinct regions within individual olivine fragments. We conclude that DCT can be applied to the study of rocks and other crystalline materials, and offers advantages over conventional techniques. We also note that LabDCT may offer a solution to the crystallographic measurement of substances that would otherwise be difficult to measure due to challenges in obtaining a perfect sample polish. Future developments to accommodate larger experimental volumes and additional crystallographic systems within a sample promises to expand the applicability and impact of DCT

    The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition.

    Get PDF
    Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity

    Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution.

    Get PDF
    Abstract CLIC1 (NCC27) is a member of the highly conserved class of chloride ion channels that exists in both soluble and integral membrane forms. Purified CLIC1 can integrate into synthetic lipid bilayers forming a chloride channel with similar properties to those observed in vivo. The structure of the soluble form of CLIC1 has been determined at 1.4-A resolution. The protein is monomeric and structurally homologous to the glutathioneS-transferase superfamily, and it has a redox-active site resembling glutaredoxin. The structure of the complex of CLIC1 with glutathione shows that glutathione occupies the redox-active site, which is adjacent to an open, elongated slot lined by basic residues. Integration of CLIC1 into the membrane is likely to require a major structural rearrangement, probably of the N-domain (residues 1–90), with the putative transmembrane helix arising from residues in the vicinity of the redox-active site. The structure indicates that CLIC1 is likely to be controlled by redox-dependent processes

    Metallothionein (MT) -I and MT-II Expression Are Induced and Cause Zinc Sequestration in the Liver after Brain Injury

    Get PDF
    Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver

    Quantitative measurement of olivine composition in three dimensions using helical-scan X-ray micro-tomography

    Get PDF
    Olivine is a key constituent in the silicate Earth; its composition and texture informs petrogenetic understanding of numerous rock types. Here we develop a quantitative and reproducible method to measure olivine composition in three dimensions without destructive analysis, meaning full textural context is maintained. The olivine solid solution between forsterite and fayalite was measured using a combination of three-dimensional (3D) X-ray imaging techniques, 2D backscattered electron imaging, and spot-analyses using wavelength-dispersive electron probe microanalysis. The linear attenuation coefficient of natural crystals across a range of forsterite content from ∼73–91 mol% were confirmed to scale linearly with composition using 53, 60, and 70 kV monochromatic beams at I12-JEEP beamline, Diamond Light Source utilizing the helical fly-scan acquisition. A polychromatic X-ray source was used to scan the same crystals, which yielded image contrast equivalent to measuring the mol% of forsterite with an accuracy of 3 mm domains within a large crystal of San Carlos forsterite that varies by ∼2 Fo mol%. This offers a solution to an outstanding question of inter-laboratory standardization, and also demonstrates the utility of 3D, non-destructive, chemical measurement. To our knowledge, this study is the first to describe the application of XMT to quantitative chemical measurement across a mineral solid solution. Our approach may be expanded to calculate the chemistry of other mineral systems in 3D, depending upon the number, chemistry, and density of end-members

    Magmatic crystal records in time, space, and process, causatively linked with volcanic unrest

    Get PDF
    How a volcano has behaved throughout its past is a guide to its future behaviour. Detailed knowledge of what preceded eruptions from specific volcanoes, and how this can be recognised in real-time, are pivotal questions of this field. Here, the physical history of the magma that erupted in 2010 from the flank of Eyjafjallajökull volcano, Iceland, is reconstructed in absolute time and space using only chemical records from erupted crystals. The details of this reconstruction include the number of magma bodies, their geometry, their depth, their relative inflation rate and changes to all of the aforementioned through time. Petrology and geodesy (data gathered in real-time) arrive at the same set of conclusions. As such, we report detailed agreement, which demonstrates a causative link between knowledge determined post-eruption via a physical–chemical perspective and knowledge gained syn-eruption from monitoring signals. The composition of olivine crystal cores (∼Fo74–87), and that of the chemical zonation around each core caused by disequilibrium processes, are shown to form systematic patterns at the population scale. Reverse zonation (toward Mg rich) exhibits a constant chemical offset from its crystal core (≤2 mol % Fo), while normal zonation (toward Fe rich) converges to a single composition (∼Fo75). Conventional petrological models — for instance multiple-magma-mixing across a range of crustal depths — can explain the presence of a range of crystal core composition in the erupted rocks, but cannot explain these patterns of crystal disequilibria. Instead, we describe how a single primitive melt produces crystals over a wide range in composition and generates systematic disequilibrium. Cooling causes crystal production from both roof and floor of a horizontal magma geometry. Crystal settling causes asymmetric thermal – and therefore compositional – stratification of the melt due to progressive insulation via development of a crystal mush at the floor, a process we term “Crystal Rain”. Crucially, each crystal's record is both a cause and effect of the internal process of simultaneous fractional crystallisation and settling; no external processes or materials are required. We then extract temporal information from our crystals using Fe–Mg interdiffusion modelling, and combine it with the composition and zonation data. The concept of Crystal Rain is applied, and resolves two thin (metres) sills which are staggered in time and depth, and exhibit different inflation rates. Since the approach of integrating crystal chronology within a causative physical framework may be applied to entire volcanic successions, it has potential to yield valuable insights to past, and by inference future, magmatic and volcanic behaviours by deterministic means

    Toward a near real-time magma ascent monitoring by combined fluid inclusion barometry and ongoing seismicity

    No full text
    International audienceFluid inclusion microthermometry on olivines, clinopyroxenes, and amphiboles was used during a volcanic eruption, in combination with real-time seismic data and rapid petrographic observations, for petrological monitoring purposes. By applying this approach to the study of 18 volcanic samples collected during the eruption of Tajogaite volcano on La Palma Island (Canary Islands) in 2021, changes in the magma system were identified over time and space. Magma batches with distinct petrographic and geochemical characteristics emerged from source zones whose depth progressively increased from 27 to 31 kilometers. The rise of magma of deeper origin is attested by fluid inclusions made of N 2 and CO, markers of mantle outgassing. Magma accumulation occurred over different durations at depths of 22 to 27 and 4 to 16 kilometers. Time-integrated magma ascent velocities (including ponding times) were estimated at between 0.01 and 0.1 meters per second. This method is cost-effective and quickly identifies changes in the magma system during an eruption, enhancing petrological monitoring procedures
    corecore