21 research outputs found

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Cardiac magnetic resonance for asymptomatic patients with type 2 diabetes and cardiovascular high risk (CATCH): a pilot study

    No full text
    Abstract Background Stress cardiovascular magnetic resonance (CMR) to screen for silent myocardial ischaemia in asymptomatic high risk patients with type 2 diabetes mellitus (DM) has never been performed, and its effectiveness is unknown. Our aim was to determine the feasibility of a screening programme using stress CMR by obtaining preliminary data on the prevalence of silent ischaemia caused by obstructive coronary artery disease (CAD) and quantify myocardial perfusion in asymptomatic high risk patients with type 2 diabetes. Methods In this prospective cohort study, we recruited 63 asymptomatic DM patients (mean age 66 years ± 4.4 years; 77.8% male); with Framingham risk score ≥ 20% from 3 sites from June 2017 to August 2018. Normal volunteers were recruited to determine normal global myocardial perfusion reserve index (MPRI). Adenosine stress CMR and global MPRI was performed and measured in all subjects. Positive stress CMR cases were referred for catheter coronary angiography (CCA) with/without fractional flow reserve (FFR) measurements. Positive CCA was defined as an FFR ≤ 0.8 or coronary narrowing ≥ 70%. Patients were followed up for major adverse cardiovascular events. Prevalence is presented as patient numbers and percentage. Mann–Whitney U test was used to compare global MPRI between patients and normal volunteers. Results 13 patients had positive stress CMR with positive CCA (20.6% of patient population), while 9 patients with positive stress CMR examinations had a negative CCA. 5 patients (7.9%) had infarcts detected of which 2 patients had no stress perfusion defects. 12 patients had coronary artery stents inserted, whilst 1 patient declined stent placement. DM patients had lower global MPRI than normal volunteers (n = 7) (1.43 ± 0.27 vs 1.83 ± 0.31 respectively; p < 0.01). After a median follow-up of 653 days, there was no death, heart failure, acute coronary syndrome hospitalisation or stroke. Conclusion 20.6% of asymptomatic DM patients (with Framingham risk ≥ 20%) had silent obstructive CAD. Furthermore, asymptomatic patients have reduced global MPRI than normal volunteers. Trial Registration: ClinicalTrials.gov Registration Number: NCT03263728 on 28th August 2017; https://clinicaltrials.gov/ct2/show/NCT03263728

    Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error

    Get PDF
    10.1016/j.ajhg.2013.06.016American Journal of Human Genetics932264-277AJHG

    Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study in multiple populations

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore