57 research outputs found

    Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p><it>Mycobacterium tuberculosis </it>continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR) strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuberculosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them.</p> <p>Results:</p> <p>We completed a bottom up reconstruction of the metabolic network of <it>Mycobacterium tuberculosis </it>H37Rv. This functional <it>in silico </it>bacterium, <it>iNJ</it>661, contains 661 genes and 939 reactions and can produce many of the complex compounds characteristic to tuberculosis, such as mycolic acids and mycocerosates. We grew this bacterium <it>in silico </it>on various media, analyzed the model in the context of multiple high-throughput data sets, and finally we analyzed the network in an 'unbiased' manner by calculating the Hard Coupled Reaction (HCR) sets, groups of reactions that are forced to operate in unison due to mass conservation and connectivity constraints.</p> <p>Conclusion:</p> <p>Although we observed growth rates comparable to experimental observations (doubling times ranging from about 12 to 24 hours) in different media, comparisons of gene essentiality with experimental data were less encouraging (generally about 55%). The reasons for the often conflicting results were multi-fold, including gene expression variability under different conditions and lack of complete biological knowledge. Some of the inconsistencies between <it>in vitro </it>and <it>in silico </it>or <it>in vivo </it>and <it>in silico </it>results highlight specific loci that are worth further experimental investigations. Finally, by considering the HCR sets in the context of known drug targets for tuberculosis treatment we proposed new alternative, but equivalent drug targets.</p

    European bone mineral density loci are also associated with BMD in East-Asian populations

    Get PDF
    Most genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10 -9), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10 -5), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10 -5), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10 -5), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians. © 2010 Styrkarsdottir et al.published_or_final_versio

    Experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus

    Get PDF
    Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing. Here, we introduce a high-quality genome of the anaerobic fungus Neocallimastix lanati from which we constructed the first genome-scale metabolic model of an anaerobic fungus. Relative to its size (200 Mbp, sequenced at 62× depth), it is the least fragmented publicly available gut fungal genome to date. Of the 1,788 lignocellulolytic enzymes annotated in the genome, 585 are associated with the fungal cellulosome, underscoring the powerful lignocellulolytic potential of N. lanati. The genome-scale metabolic model captures the primary metabolism of N. lanati and accurately predicts experimentally validated substrate utilization requirements. Additionally, metabolic flux predictions are verified by 13C metabolic flux analysis, demonstrating that the model faithfully describes the underlying fungal metabolism. Furthermore, the model clarifies key aspects of the hydrogenosomal metabolism and can be used as a platform to quantitatively study these biotechnologically important yet poorly understood early-branching fungi

    The Impact of Divergence Time on the Nature of Population Structure: An Example from Iceland

    Get PDF
    The Icelandic population has been sampled in many disease association studies, providing a strong motivation to understand the structure of this population and its ramifications for disease gene mapping. Previous work using 40 microsatellites showed that the Icelandic population is relatively homogeneous, but exhibits subtle population structure that can bias disease association statistics. Here, we show that regional geographic ancestries of individuals from Iceland can be distinguished using 292,289 autosomal single-nucleotide polymorphisms (SNPs). We further show that subpopulation differences are due to genetic drift since the settlement of Iceland 1100 years ago, and not to varying contributions from different ancestral populations. A consequence of the recent origin of Icelandic population structure is that allele frequency differences follow a null distribution devoid of outliers, so that the risk of false positive associations due to stratification is minimal. Our results highlight an important distinction between population differences attributable to recent drift and those arising from more ancient divergence, which has implications both for association studies and for efforts to detect natural selection using population differentiation

    Impact of Anti-Inflammatory Agents on the Gene Expression Profile of Stimulated Human Neutrophils: Unraveling Endogenous Resolution Pathways

    Get PDF
    Adenosine, prostaglandin E2, or increased intracellular cyclic AMP concentration each elicit potent anti-inflammatory events in human neutrophils by inhibiting functions such as phagocytosis, superoxide production, adhesion and cytokine release. However, the endogenous molecular pathways mediating these actions are poorly understood. In the present study, we examined their impact on the gene expression profile of stimulated neutrophils. Purified blood neutrophils from healthy donors were stimulated with a cocktail of inflammatory agonists in the presence of at least one of the following anti-inflammatory agents: adenosine A2A receptor agonist CGS 21680, prostaglandin E2, cyclic-AMP-elevating compounds forskolin and RO 20-1724. Total RNA was analyzed using gene chips and real-time PCR. Genes encoding transcription factors, enzymes and regulatory proteins, as well as secreted cytokines/chemokines showed differential expression. We identified 15 genes for which the anti-inflammatory agents altered mRNA levels. The agents affected the expression profile in remarkably similar fashion, suggesting a central mechanism limiting cell activation. We have identified a set of genes that may be part of important resolution pathways that interfere with cell activation. Identification of these pathways will improve understanding of the capacity of tissues to terminate inflammatory responses and contribute to the development of therapeutic strategies based on endogenous resolution

    On the orders of magnitude of epigenic dynamics and monoclonal antibody production

    Get PDF
    The hybridoma cell's maximum capacity for monoclonal antibody ( MAb ) production is estimated to be 2300–8000 MAb molecules/cell/s, using measured rates of transcription and translation, and the limitations imposed by the size of the polymerase molecule and the ribosome. Nearly all the production rates reported in the literature fall into or below this range of production rates. Data from batch cultures of hybridomas demonstrate a constant specific rate of MAb production until the time integral of the viable cell concentration reaches about 10 8 cells · h/cm 3 . At this point, some essential nutrients from the standard media are depleted, causing MAb production to decline.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47810/1/449_2004_Article_BF00369177.pd

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore