2,245 research outputs found

    Sensitive electrochemical assays of DNA structure

    Get PDF
    Electrochemical methods have been used to study the structure and function of nucleic acids for more than 50 years. These approaches complement other experimental techniques, which we illustrate by using examples from studies of processes involved in the repair of DNA damage. The excellent sensitivity of the electrochemical approaches makes them good candidates for use as biosensors of a wide range of molecules and biological processes

    Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA

    Get PDF
    SMC5/6 is a highly conserved protein complex related to cohesin and condensin, which are the key components of higher-order chromatin structures. The SMC5/6 complex is essential for proliferation in yeast and is involved in replication fork stability and processing. However, the precise mechanism of action of SMC5/6 is not known. Here we present evidence that the NSE1/NSE3/NSE4 sub-complex of SMC5/6 binds to double-stranded DNA without any preference for DNA-replication/recombination intermediates. Mutations of key basic residues within the NSE1/NSE3/NSE4 DNA-binding surface reduce binding to DNA in vitro. Their introduction into the Schizosaccharomyces pombe genome results in cell death or hypersensitivity to DNA damaging agents. Chromatin immunoprecipitation analysis of the hypomorphic nse3 DNA-binding mutant shows a reduced association of fission yeast SMC5/6 with chromatin. Based on our results, we propose a model for loading of the SMC5/6 complex onto the chromatin

    Quantifying cellular traction forces in three dimensions

    Get PDF
    Cells engage in mechanical force exchange with their extracellular environment through tension generated by the cytoskeleton. A method combining laser scanning confocal microscopy (LSCM) and digital volume correlation (DVC) enables tracking and quantification of cell-mediated deformation of the extracellular matrix in all three spatial dimensions. Time-lapse confocal imaging of migrating 3T3 fibroblasts on fibronectin (FN)-modified polyacrylamide gels of varying thickness reveals significant in-plane (x, y) and normal (z) displacements, and illustrates the extent to which cells, even in nominally two-dimensional (2-D) environments, explore their surroundings in all three dimensions. The magnitudes of the measured displacements are independent of the elastic moduli of the gels. Analysis of the normal displacement profiles suggests that normal forces play important roles even in 2-D cell migration

    Technical Development of a New Semispherical Radiofrequency Bipolar Device (RONJA): Ex Vivo and In Vivo Studies

    Get PDF
    The aim of this study is to inform about the development of a new semispherical surgical instrument for the bipolar multielectrode radiofrequency liver ablation. Present tools are universal; however they have several disadvantages such as ablation of healthy tissue, numerous needle punctures, and, therefore, longer operating procedure. Our newly designed and tested semispherical surgical tool can solve some of these disadvantages. By conducting an in vivo study on a set of 12 pigs, randomly divided into two groups, we have compared efficiency of the newly developed instrument with the commonly used device. Statistical analysis showed that there were no significant differences between the groups. On average, the tested instrument RONJA had shorter ablation time in both liver lobes and reduced the total operating time. The depth of the thermal alteration was on average 4 mm larger using the newly tested instrument. The new radiofrequency method described in this study could be used in open liver surgery for the treatment of small liver malignancies (up to 2 cm) in a single application with the aim of saving healthy liver parenchyma. Further experimental studies are needed to confirm these results before clinical application of the method in the treatment of human liver malignancies

    Molecular signatures of cell migration in C. elegans Q neuroblasts.

    Get PDF
    Metazoan cell movement has been studied extensively in vitro, but cell migration in living animals is much less well understood. In this report, we have studied the Caenorhabditis elegans Q neuroblast lineage during larval development, developing live animal imaging methods for following neuroblast migration with single cell resolution. We find that each of the Q descendants migrates at different speeds and for distinct distances. By quantitative green fluorescent protein imaging, we find that Q descendants that migrate faster and longer than their sisters up-regulate protein levels of MIG-2, a Rho family guanosine triphosphatase, and/or down-regulate INA-1, an integrin alpha subunit, during migration. We also show that Q neuroblasts bearing mutations in either MIG-2 or INA-1 migrate at reduced speeds. The migration defect of the mig-2 mutants, but not ina-1, appears to result from a lack of persistent polarization in the direction of cell migration. Thus, MIG-2 and INA-1 function distinctly to control Q neuroblast migration in living C. elegans

    The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex

    Get PDF
    The MAGE (Melanoma-associated antigen) protein family members are structurally related to each other by a MAGEhomology domain comprised of 2 winged helix motifs WH/A and WH/B. This family specifically evolved in placental mammals although single homologs designated NSE3 (non-SMC element) exist in most eukaryotes. NSE3, together with its partner proteins NSE1 and NSE4 form a tight subcomplex of the structural maintenance of chromosomes SMC5–6 complex. Previously, we showed that interactions of the WH/B motif of the MAGE proteins with their NSE4/EID partners are evolutionarily conserved (including the MAGEA1-NSE4 interaction). In contrast, the interaction of the WH/A motif of NSE3 with NSE1 diverged in the MAGE paralogs. We hypothesized that the MAGE paralogs acquired new RING-finger containing partners through their evolution and form MAGE complexes reminiscent of NSE1-NSE3-NSE4 trimers. In this work, we employed the yeast 2-hybrid system to screen a human RING-finger protein library against several MAGE baits. We identified a number of potential MAGE-RING interactions and confirmed several of them (MDM4, PCGF6, RNF166, TRAF6, TRIM8, TRIM31, TRIM41) in co-immunoprecipitation experiments. Among these MAGE-RING pairs, we chose to examine MAGEA1-TRIM31 in detail and showed that both WH/A and WH/B motifs of MAGEA1 bind to the coiled-coil domain of TRIM31 and that MAGEA1 interaction stimulates TRIM31 ubiquitin-ligase activity. In addition, TRIM31 directly binds to NSE4, suggesting the existence of a TRIM31-MAGEA1-NSE4 complex reminiscent of the NSE1-NSE3-NSE4 trimer. These results suggest that MAGEA1 functions as a co-factor of TRIM31 ubiquitin-ligase and that the TRIM31-MAGEA1-NSE4 complex may have evolved from an ancestral NSE1-NSE3-NSE4 complex

    Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families

    Get PDF
    The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins

    Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples

    Get PDF
    Detection of specific DNA sequences in clinical samples is a key goal of studies on DNA biosensors and gene chips. Herein we present a highly sensitive electrochemical genosensor for direct measurements of specific DNA sequences in undiluted and untreated human serum and urine samples. Such genosensing relies on a new ternary interface involving hexanedithiol (HDT) co-immobilized with the thiolated capture probe (SHCP) on gold surfaces, followed by the incorporation of 6-mercapto-1-hexanol (MCH) as diluent..

    Visualizing muscle cell migration in situ

    Get PDF
    AbstractBackground: Cell migration has been studied extensively by manipulating and observing cells bathed in putative chemotactic or chemokinetic agents on planar substrates. This environment differs from that in vivo and, consequently, the cells can behave abnormally. Embryo slices provide an optically accessible system for studying cellular navigation pathways during development. We extended this system to observe the migration of muscle precursors from the somite into the forelimb, their cellular morphology, and the localization of green fluorescent protein (GFP)-tagged adhesion-related molecules under normal and perturbed conditions.Results: Muscle precursors initiated migration synchronously and migrated in broad, rather than highly defined, regions. Bursts of directed migration were followed by periods of meandering or extension and retraction of cell protrusions. Although paxillin did not localize to discernible intracellular structures, we found that α-actinin localized to linear, punctate structures, and the α5 integrin to some focal complexes and/or vesicle-like concentrations. Alterations in the expression of adhesion molecules inhibited migration. The muscle precursors migrating in situ formed unusually large, long-lived protrusions that were polarized in the direction of migration. Unlike wild-type Rac, a constitutively active Rac localized continuously around the cell surface and promoted random protrusive activity and migration.Conclusions: The observation of cellular migration and the dynamics of molecular organization at high temporal and spatial resolution in situ is feasible. Migration from the somite to the wing bud is discontinuous and not highly stereotyped. In situ, local activation of Rac appears to produce large protrusions, which in turn, leads to directed migration. Adhesion can also regulate migration

    Analysis of tissue transglutaminase function in the migration of swiss 3T3 fibroblasts - the active-state conformation of the enzyme does not affect cell motility but is important for its secretion

    Get PDF
    Increasing evidence suggests that tissue transglutaminase (tTGase; type II) is externalized from cells, where it may play a key role in cell attachment and spreading and in the stabilization of the extracellular matrix (ECM) through protein cross-linking. However, the relationship between these different functions and the enzyme’s mechanism of secretion is not fully understood. We have investigated the role of tTGase in cell migration using two stably transfected fibroblast cell lines in which expression of tTGase in its active and inactive (C277S mutant) states is inducible through the tetracycline-regulated system. Cells overexpressing both forms of tTGase showed increased cell attachment and decreased cell migration on fibronectin. Both forms of the enzyme could be detected on the cell surface, but only the clone overexpressing catalytically active tTGase deposited the enzyme into the ECM and cell growth medium. Cells overexpressing the inactive form of tTGase did not deposit the enzyme into the ECM or secrete it into the cell culture medium. Similar results were obtained when cells were transfected with tTGase mutated at Tyr274 (Y274A), the proposed site for the cis- ,trans peptide bond, suggesting that tTGase activity and/or its tertiary conformation dependent on this bond may be essential for its externalization mechanism. These results indicate that tTGase regulates cell motility as a novel cell-surface adhesion protein rather than as a matrix-cross-linking enzyme. They also provide further important insights into the mechanism of externalization of the enzyme into the extracellular matrix
    corecore