11 research outputs found

    LDH Ternary Nanocomposites: g-C<sub>3</sub>N<sub>4</sub> Intercalated ZnOMg-Al for Superior Photocatalytic Activity towards Dye Degradation

    Get PDF
    Photocatalytic dye degradation has received more attention as an affordable and effective way to treat the dye polluted water. In the present chapter, we are going to discuss; (i) the preparation and photophysical characterization of g-C3N4 intercalated ZnO\Mg-Al LDH, a novel ternary nanocomposite, and (ii) its visible light photocatalytic degradation activity against the methylene blue dye. LDHs are 2D materials composed of “brucite-like” cationic layers where an inclusion of trivalent cations presents an overall positive charge to the nanosheets. g-C3N4 is one of the organic semiconductor photocatalyst which active for several types of reactions such as CO2 reduction, water splitting, and degradation because of its stable, non-toxic, and earth-abundant nature. Mainly, the development of numerous 2D g-C3N4 nanosheets has been extensively used in the field of photocatalyst. By the combination heterojunction with 2D/2D interface can effectively improve the photocatalytic activity. The nitrogen-rich g-C3N4 intercalated ZnO\Mg-Al LDH ternary nanocomposite formation could follow the direct dye degradation process and results enhance the visible light absorption. The enhanced photocatalytic activity is mainly due to the improved charge separation rate and high number of photogenerated electrons. The large number of photogenerated electrons and high charge separation efficiency are effectively influence the dye degradation efficiency

    Highly Efficient Solar-Light-Active Ag-Decorated g-C3N4 Composite Photocatalysts for the Degradation of Methyl Orange Dye

    No full text
    Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).In this study, we utilized calcination and simple impregnation methods to successfully fabricate bare g-C3N4 (GCN) and x% Ag/g-C3N4 (x% AgGCN) composite photocatalysts with various weight percentages (x = 1, 3, 5, and 7 wt.%). The synthesized bare and composite photocatalysts were analyzed to illustrate their phase formation, functional group, morphology, and optical properties utilizing XRD, FT-IR, UV-Vis DRS, PL, FE-SEM, and the EDS. The photodegradation rate of MO under solar light irradiation was measured, and the 5% AgGCN composite photocatalyst showed higher photocatalytic activity (99%), which is very high compared to other bare and composite photocatalysts. The MO dye degradation rate constant with the 5% AgGCN photocatalyst exhibits 14.83 times better photocatalytic activity compared to the bare GCN catalyst. This photocatalyst showed good efficiency in the degradation of MO dye and demonstrated cycling stability even in the 5th successive photocatalytic reaction cycle. The higher photocatalytic activity of the 5% AgGCN composite catalyst for the degradation of MO dye is due to the interaction of Ag with GCN and the localized surface plasmon resonance (SPR) effect of Ag. The scavenger study results indicate that O2 •− radicals play a major role in MO dye degradation. A possible charge-transfer mechanism is proposed to explain the solar-light-driven photocatalyst of GCN

    Emerging Trends of Nanotechnology and Genetic Engineering in Cyanobacteria to Optimize Production for Future Applications

    No full text
    Nanotechnology has the potential to revolutionize various fields of research and development. Multiple nanoparticles employed in a nanotechnology process are the magic elixir that provides unique features that are not present in the component&rsquo;s natural form. In the framework of contemporary research, it is inappropriate to synthesize microparticles employing procedures that include noxious elements. For this reason, scientists are investigating safer ways to produce genetically improved Cyanobacteria, which has many novel features and acts as a potential candidate for nanoparticle synthesis. In recent decades, cyanobacteria have garnered significant interest due to their prospective nanotechnological uses. This review will outline the applications of genetically engineered cyanobacteria in the field of nanotechnology and discuss its challenges and future potential. The evolution of cyanobacterial strains by genetic engineering is subsequently outlined. Furthermore, the recombination approaches that may be used to increase the industrial potential of cyanobacteria are discussed. This review provides an overview of the research undertaken to increase the commercial avenues of cyanobacteria and attempts to explain prospective topics for future research

    In Vitro Wound Healing Potential of Stem Extract of Alternanthera sessilis

    No full text
    Impaired wound healing is one of the serious problems among the diabetic patients. Currently, available treatments are limited due to side effects and cost effectiveness. In line with that, we attempted to use a natural source to study its potential towards the wound healing process. Therefore, Alternanthera sessilis (A. sessilis), an edible and medicinal plant, was chosen as the target sample for the study. During this investigation, the wound closure properties using stem extract of A. sessilis were analyzed. Accordingly, we analyzed the extract on free radical scavenging capacity and the cell migration of two most prominent cell types on the skin, human dermal fibroblast (NHDF), keratinocytes (HaCaT), and diabetic human dermal fibroblast (HDF-D) to mimic the wound healing in diabetic patients. The bioactive compounds were identified using gas chromatography-mass spectrometry (GC-MS). We discovered that the analysis exhibited a remarkable antioxidant, proliferative, and migratory rate in NHDF, HaCaT, and HDF-D in dose-dependent manner, which supports wound healing process, due to the presence of wound healing associated phytocompounds such as Hexadecanoic acid. This study suggested that the stem extract of A. sessilis might be a potential therapeutic agent for skin wound healing, supporting its traditional medicinal uses

    Receptor-based electrochemical biosensors for the detection of contaminants in food products

    No full text
    International audienceDifferent types of contaminants (e.g., pesticides, veterinary drugs) can be found in food products intended for human consumption (e.g., water, food from animal or plant origin). The risks for the consumers' health are multiple (e.g., endocrine disruptor's effect, carcinogenic effect, allergic risks). The detection of contaminants in food products is the first critical step of the control. Conventional screening methods could be bioassays, immunological methods, or physicochemical methods. Biosensors are identified as innovative screening methods. Electrochemical biosensors make it possible to develop a promising and economically interesting approach. Technological advances (e.g., nanomaterials, microfluidics) improved the methods' sensitivity

    Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing

    No full text
    corecore