189 research outputs found

    Architectural choices for the Columbia 0.8 Teraflops machine

    Full text link
    We discuss the hardware design choices made in our 16K-node 0.8 Teraflops supercomputer project, a machine architecture optimized for full QCD calculations. The efficiency of the conjugate gradient algorithm in terms of balance of floating-point operations, memory handling and utilization, and communication overhead is addressed. We also discuss the technological innovations and software tools that facilitate hardware design and what opportunities these give to the academic community.Comment: Contribution to Lattice 94. 3 pages. Latex source followed by compressed, uuenocded postscript file of the complete pape

    QCDSP: The first 64 nodes

    Full text link
    We present a summary of the progress on QCDSP in the last year. QCDSP, Quantum Chromodynamics on Digital Signal Processors, is an inexpensive computer being built at Columbia that can achieve 0.8 teraflops for three million dollars.Comment: 4 pages, 1 figur

    The status of US Teraflops-scale projects

    Full text link
    The current status of United States projects pursuing Teraflops-scale computing resources for lattice field theory is discussed. Two projects are in existence at this time: the Multidisciplinary Teraflops Project, incorporating the physicists of the QCD Teraflops Collaboration, and a smaller project, centered at Columbia, involving the design and construction of a 0.8 Teraflops computer primarily for QCD.Comment: Contribution to Lattice 94. 7 pages. Latex source followed by compressed, uuenocded postscript file of the complete paper. Individual figures available from [email protected]

    Status of the QCDSP project

    Full text link
    We describe the completed 8,192-node, 0.4Tflops machine at Columbia as well as the 12,288-node, 0.6Tflops machine assembled at the RIKEN Brookhaven Research Center. Present performance as well as our experience in commissioning these large machines is presented. We outline our on-going physics program and explain how the configuration of the machine is varied to support a wide range of lattice QCD problems, requiring a variety of machine sizes. Finally a brief discussion is given of future prospects for large-scale lattice QCD machines.Comment: LATTICE98(machines), 3 pages, 1 picture, 1 figur

    Energy of eigen-modes in magnetohydrodynamic flows of ideal fluids

    Full text link
    Analytical expression for energy of eigen-modes in magnetohydrodynamic flows of ideal fluids is obtained. It is shown that the energy of unstable modes is zero, while the energy of stable oscillatory modes (waves) can assume both positive and negative values. Negative energy waves always correspond to non-symmetric eigen-modes -- modes that have a component of wave-vector along the equilibrium velocity. These results suggest that all non-symmetric instabilities in ideal MHD systems with flows are associated with coupling of positive and negative energy waves. As an example the energy of eigen-modes is calculated for incompressible conducting fluid rotating in axial magnetic field.Comment: 10 pages, 3 figure

    Better than $1/Mflops sustained: a scalable PC-based parallel computer for lattice QCD

    Full text link
    We study the feasibility of a PC-based parallel computer for medium to large scale lattice QCD simulations. The E\"otv\"os Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes with 512 MB RDRAM. The 32-bit, single precision sustained performance for dynamical QCD without communication is 1510 Mflops/node with Wilson and 970 Mflops/node with staggered fermions. This gives a total performance of 208 Gflops for Wilson and 133 Gflops for staggered QCD, respectively (for 64-bit applications the performance is approximately halved). The novel feature of our system is its communication architecture. In order to have a scalable, cost-effective machine we use Gigabit Ethernet cards for nearest-neighbor communications in a two-dimensional mesh. This type of communication is cost effective (only 30% of the hardware costs is spent on the communication). According to our benchmark measurements this type of communication results in around 40% communication time fraction for lattices upto 48^3\cdot96 in full QCD simulations. The price/sustained-performance ratio for full QCD is better than 1/MflopsforWilson(andaround1/Mflops for Wilson (and around 1.5/Mflops for staggered) quarks for practically any lattice size, which can fit in our parallel computer. The communication software is freely available upon request for non-profit organizations.Comment: 14 pages, 3 figures, final version to appear in Comp.Phys.Com
    • …
    corecore