308 research outputs found

    Micropillar compression study of Fe-irradiated 304L steel

    Get PDF
    Stainless steel used in nuclear reactors are experiencing heavy neutron irradiation that modify their microstructure, and therefore their mechanical properties. To assess the irradiation-induced hardening and the modification of deformation modes at the grain scale on 304L steels, indentations [1] and in situ microcompression tests were conducted on Fe-ions irradiated and non-irradiated FIB-made pillars [2]. 10 MeV and up to 8 dpa Fe irradiations were conducted at 450°C to surrogate neutron irradiation. Size effect was detected on unirradiated but not on irradiated pillars, revealing a strong impact of the microstructure on the mechanical behavior. Surprisingly, smoother plastic deformation took place in irradiated pillars while localized shear bands were observed in unirradiated ones. TEM investigations helped elaborating some hypothesis for this different behavior. Please click Additional Files below to see the full abstract

    Relationships between bone geometry, volumetric bone mineral density and bone microarchitecture of the distal radius and tibia with alcohol consumption

    No full text
    PurposeChronic heavy alcohol consumption is associated with bone density loss and increased fracture risk, while low levels of alcohol consumption have been reported as beneficial in some studies. However, studies relating alcohol consumption to bone geometry, volumetric bone mineral density (vBMD) and bone microarchitecture, as assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), are lacking.MethodsHere we report an analysis from the Hertfordshire Cohort Study, in which we studied associations between HR-pQCT measures at the distal radius and tibia and alcohol consumption in 376 participants (198 men and 178 women) aged 72.1–81.4 years.ResultsA total of 30 (15.2%), 90 (45.5%) and 78 (39.4%) men drank minimal/none (< 1 unit/week), low (? 1 unit/week and < 11 units/week) and moderate/high (? 11 units/week) amounts of alcohol respectively. These figures were 74 (41.8%), 80 (45.2%) and 23 (13.0%) respectively in women for minimal/none (< 1 unit/week), low (? 1 unit/week and < 8 units/week) and moderate/high (? 8 units/week). At the distal radius, after adjustment for confounding factors (age, BMI, smoking status, dietary calcium intake, physical activity and socioeconomic status and years since menopause and HRT use for women), men that drank low alcohol had lower cortical thickness (p = 0.038), cortical vBMD (p = 0.033), and trabecular vBMD (p = 0.028) and higher trabecular separation (p = 0.043) than those that drank none/minimal alcohol. Similar differences were shown between minimal/none and moderate/high alcohol although these only reached statistical significance for the cortical parameters. Interestingly, after similar adjustment, women showed similar differences in the trabecular compartment between none/minimal alcohol and low alcohol at the distal tibia. However, women that drank moderate/high alcohol had significantly higher trabecular vBMD (p = 0.007), trabecular thickness (p = 0.026), and trabecular number (p = 0.042) and higher trabecular separation (p = 0.026) at the distal radius than those that drank low alcohol.ConclusionsOur results suggest that alcohol consumption (low and moderate/high) may have a detrimental impact on bone health in men in both the cortical and trabecular compartments at the distal radius with similar results in women in the trabecular compartment between none/minimal alcohol and low alcohol at the distal tibia suggesting that avoidance of alcohol may be beneficial for bone health.AbbreviationsaBMD, areal bone mineral density; BMI, body mass index; Ct. area, cortical area; Ct.vBMD, cortical density; Ct.Po, cortical porosity; Ct.Th, cortical thickness; DXA, dual energy X-ray absorptiometry; HCS, Hertfordshire Cohort Study; HRpQCT, high-resolution peripheral quantitative computed tomography; pQCT, peripheral quantitative computed tomography; Tt.area, total cross-sectional area; Tb.vBMD, trabecular BMD; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; vBMD, volumetric bone mineral density

    Bone Remodelling Markers in Rheumatoid Arthritis

    Full text link
    Bone loss in rheumatoid arthritis (RA) patients results from chronic inflammation and can lead to osteoporosis and fractures. A few bone remodeling markers have been studied in RA witnessing bone formation (osteocalcin), serum aminoterminal propeptide of type I collagen (PINP), serum carboxyterminal propeptide of type I collagen (ICTP), bone alkaline phosphatase (BAP), osteocalcin (OC), and bone resorption: C-terminal telopeptide of type 1 collagen (I-CTX), N-terminal telopeptide of type 1 collagen (I-NTX), pyridinolines (DPD and PYD), and tartrate-resistant acid phosphatase (TRAP). Bone resorption can be seen either in periarticular bone (demineralization and erosion) or in the total skeleton (osteoporosis). Whatever the location, bone resorption results from activation of osteoclasts when the ratio between osteoprotegerin and receptor activator of nuclear factor kappa-B ligand (OPG/RANKL) is decreased under influence of various proinflammatory cytokines. Bone remodeling markers also allow physicians to evaluate the effect of drugs used in RA like biologic agents, which reduce inflammation and exert a protecting effect on bone. We will discuss in this review changes in bone markers remodeling in patients with RA treated with biologics

    A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method

    Get PDF
    This paper deals with a new solid-fluid coupling algorithm between a rigid body and an unsteady compressible fluid flow, using an Embedded Boundary method. The coupling with a rigid body is a first step towards the coupling with a Discrete Element method. The flow is computed using a Finite Volume approach on a Cartesian grid. The expression of numerical fluxes does not affect the general coupling algorithm and we use a one-step high-order scheme proposed by Daru and Tenaud [Daru V,Tenaud C., J. Comput. Phys. 2004]. The Embedded Boundary method is used to integrate the presence of a solid boundary in the fluid. The coupling algorithm is totally explicit and ensures exact mass conservation and a balance of momentum and energy between the fluid and the solid. It is shown that the scheme preserves uniform movement of both fluid and solid and introduces no numerical boundary roughness. The effciency of the method is demonstrated on challenging one- and two-dimensional benchmarks

    A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data

    Get PDF
    BACKGROUND: Bone marrow adipose tissue (BMAT) represents &gt; 10% fat mass in healthy humans and can be measured by magnetic resonance imaging (MRI) as the bone marrow fat fraction (BMFF). Human MRI studies have identified several diseases associated with BMFF but have been relatively small scale. Population-scale studies therefore have huge potential to reveal BMAT's true clinical relevance. The UK Biobank (UKBB) is undertaking MRI of 100,000 participants, providing the ideal opportunity for such advances.OBJECTIVE: To establish deep learning for high-throughput multi-site BMFF analysis from UKBB MRI data.MATERIALS AND METHODS: We studied males and females aged 60-69. Bone marrow (BM) segmentation was automated using a new lightweight attention-based 3D U-Net convolutional neural network that improved segmentation of small structures from large volumetric data. Using manual segmentations from 61-64 subjects, the models were trained to segment four BM regions of interest: the spine (thoracic and lumbar vertebrae), femoral head, total hip and femoral diaphysis. Models were tested using a further 10-12 datasets per region and validated using datasets from 729 UKBB participants. BMFF was then quantified and pathophysiological characteristics assessed, including site- and sex-dependent differences and the relationships with age, BMI, bone mineral density, peripheral adiposity, and osteoporosis.RESULTS: Model accuracy matched or exceeded that for conventional U-Nets, yielding Dice scores of 91.2% (spine), 94.5% (femoral head), 91.2% (total hip) and 86.6% (femoral diaphysis). One case of severe scoliosis prevented segmentation of the spine, while one case of Non-Hodgkin Lymphoma prevented segmentation of the spine, femoral head and total hip because of T2 signal depletion; however, successful segmentation was not disrupted by any other pathophysiological variables. The resulting BMFF measurements confirmed expected relationships between BMFF and age, sex and bone density, and identified new site- and sex-specific characteristics.CONCLUSIONS: We have established a new deep learning method for accurate segmentation of small structures from large volumetric data, allowing high-throughput multi-site BMFF measurement in the UKBB. Our findings reveal new pathophysiological insights, highlighting the potential of BMFF as a novel clinical biomarker. Applying our method across the full UKBB cohort will help to reveal the impact of BMAT on human health and disease.</p

    Solidaires, unitaires et démocratiques: social movement unionism and beyond?

    Get PDF
    A contribution to a Special Issue on trade union renewal that focuses on this topic in relation to the radical French trade union Solidaires, Unitaires et DĂ©mocratiques (SUD)

    Impact of osteoporosis and osteoporosis medications on fracture healing: a narrative review

    Get PDF
    UNLABELLED Antiresorptive medications do not negatively affect fracture healing in humans. Teriparatide may decrease time to fracture healing. Romosozumab has not shown a beneficial effect on human fracture healing. BACKGROUND Fracture healing is a complex process. Uncertainty exists over the influence of osteoporosis and the medications used to treat it on fracture healing. METHODS Narrative review authored by the members of the Fracture Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF), on behalf of the IOF and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT). RESULTS Fracture healing is a multistep process. Most fractures heal through a combination of intramembranous and endochondral ossification. Radiographic imaging is important for evaluating fracture healing and for detecting delayed or non-union. The presence of callus formation, bridging trabeculae, and a decrease in the size of the fracture line over time are indicative of healing. Imaging must be combined with clinical parameters and patient-reported outcomes. Animal data support a negative effect of osteoporosis on fracture healing; however, clinical data do not appear to corroborate with this. Evidence does not support a delay in the initiation of antiresorptive therapy following acute fragility fractures. There is no reason for suspension of osteoporosis medication at the time of fracture if the person is already on treatment. Teriparatide treatment may shorten fracture healing time at certain sites such as distal radius; however, it does not prevent non-union or influence union rate. The positive effect on fracture healing that romosozumab has demonstrated in animals has not been observed in humans. CONCLUSION Overall, there appears to be no deleterious effect of osteoporosis medications on fracture healing. The benefit of treating osteoporosis and the urgent necessity to mitigate imminent refracture risk after a fracture should be given prime consideration. It is imperative that new radiological and biological markers of fracture healing be identified. It is also important to synthesize clinical and basic science methodologies to assess fracture healing, so that a convergence of the two frameworks can be achieved

    Severe osteoporosis: diagnosis and follow-up. Lessons for clinical practice

    Get PDF
    The management of osteoporosis has improved considerably, leading to the development of new goals. A major concern today is the management of patients with severe osteoporosis, in whom the need for pharmacotherapy is clear [1]. Epidemiological data have established that osteoporosis is associated with severe complications [2,3]. Furthermore, osteoporosis is now recognized as a complication of several chronic diseases, whose presence adversely affects the management of osteoporosis. The ODISSEE task force (Osteoporosis DIagnosis and Surveillance of SEvErity) was established to answer practical questions regarding the management of severe osteoporosis, based on evidence in the literature. Several groups conducted an exhaustive literature review, and advice was obtained from a panel of French rheumatologists. The ODISSEE scientific committee then developed the first consensus statement on the diagnosis, follow-up and management of severe osteoporosis. This statement was validated by a panel of 70 French rheumatologists at the first national ODISSEE meeting held on November 13-14, 2009
    • 

    corecore