This paper deals with a new solid-fluid coupling algorithm between a rigid
body and an unsteady compressible fluid flow, using an Embedded Boundary
method. The coupling with a rigid body is a first step towards the coupling
with a Discrete Element method. The flow is computed using a Finite Volume
approach on a Cartesian grid. The expression of numerical fluxes does not
affect the general coupling algorithm and we use a one-step high-order scheme
proposed by Daru and Tenaud [Daru V,Tenaud C., J. Comput. Phys. 2004]. The
Embedded Boundary method is used to integrate the presence of a solid boundary
in the fluid. The coupling algorithm is totally explicit and ensures exact mass
conservation and a balance of momentum and energy between the fluid and the
solid. It is shown that the scheme preserves uniform movement of both fluid and
solid and introduces no numerical boundary roughness. The effciency of the
method is demonstrated on challenging one- and two-dimensional benchmarks