4 research outputs found

    GADD45γ: a New Vitamin D-Regulated Gene that Is Antiproliferative in Prostate Cancer Cells

    No full text
    1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] inhibits proliferation of normal and malignant prostate epithelial cells at least in part through inhibition of G1 to S phase cell cycle progression. The mechanisms of the antiproliferative effects of 1,25-(OH)2D3 have yet to be fully elucidated but are known to require the vitamin D receptor. We previously developed a 1,25-(OH)2D3-resistant derivative of the human prostate cancer cell line, LNCaP, which retains active vitamin D receptors but is not growth inhibited by 1,25-(OH)2D3. Gene expression profiling revealed two novel 1,25-(OH)2D3-inducible genes, growth arrest and DNA damage-inducible gene gamma (GADD45γ) and mitogen induced gene 6 (MIG6), in LNCaP but not in 1,25-(OH)2D3-resistant cells. GADD45γ up-regulation was associated with growth inhibition by 1,25-(OH)2D3 in human prostate cancer cells. Ectopic expression of GADD45γ in either LNCaP or ALVA31 cells resulted in G1 accumulation and inhibition of proliferation equal to or greater than that caused by 1,25-(OH)2D3 treatment. In contrast, ectopic expression of MIG6 had only minimal effects on cell cycle distribution and proliferation. Whereas GADD45γ has been shown to be induced by androgens in prostate cancer cells, up-regulation of GADD45γ by 1,25-(OH)2D3 was not dependent on androgen receptor signaling, further refuting a requirement for androgens/androgen receptor in vitamin D-mediated growth inhibition. These data introduce two novel 1,25-(OH)2D3-regulated genes and establish GADD45γ as a growth-inhibitory protein in prostate cancer. Furthermore, the induction of GADD45γ gene expression by 1,25-(OH)2D3 may mark therapeutic response in prostate cancer

    Filamin A Modulates Kinase Activation and Intracellular Trafficking of Epidermal Growth Factor Receptors in Human Melanoma Cells

    No full text
    The actin-binding protein filamin A (FLNa) affects the intracellular trafficking of various classes of receptors and has a potential role in oncogenesis. However, it is unclear whether FLNa regulates the signaling capacity and/or down-regulation of the activated epidermal growth factor receptor (EGFR). Here it is shown that partial knockdown of FLNa gene expression blocked ligand-induced EGFR responses in metastatic human melanomas. To gain greater insights into the role of FLNa in EGFR activation and intracellular sorting, we used M2 melanoma cells that lack endogenous FLNa and a subclone in which human FLNa cDNA has been stably reintroduced (M2A7 cells). Both tyrosine phosphorylation and ubiquitination of EGFR were significantly lower in epidermal growth factor (EGF)-stimulated M2 cells when compared with M2A7 cells. Moreover, the lack of FLNa interfered with EGFR interaction with the ubiquitin ligase c-Cbl. M2 cells exhibited marked resistance to EGF-induced receptor degradation, which was very active in M2A7 cells. Despite comparable rates of EGF-mediated receptor endocytosis, internalized EGFR colocalized with the lysosomal marker lysosome-associated membrane protein-1 in M2A7 cells but not M2 cells, in which EGFR was found to be sequestered in large vesicles and subsequently accumulated in punctated perinuclear structures after EGF stimulation. These results suggest the requirement of FLNa for efficient EGFR kinase activation and the sorting of endocytosed receptors into the degradation pathway

    Kallikreins on steroids: structure, function and hormonal regulation of prostate-specific antigen and the extended kallikrein locus

    No full text
    corecore