21 research outputs found

    Angiotensin II Facilitates Breast Cancer Cell Migration and Metastasis

    Get PDF
    Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors

    Regulation of proteasome assembly and activity in health and disease

    Get PDF

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Feed restriction and a diet's caloric value: The influence on the aerobic and anaerobic capacity of rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The influence of feed restriction and different diet's caloric value on the aerobic and anaerobic capacity is unclear in the literature. Thus, the objectives of this study were to determine the possible influences of two diets with different caloric values and the influence of feed restriction on the aerobic (anaerobic threshold: AT) and anaerobic (time to exhaustion: Tlim) variables measured by a lactate minimum test (LM) in rats.</p> <p>Methods</p> <p>We used 40 adult Wistar rats. The animals were divided into four groups: <it>ad libitum </it>commercial Purina<sup>® </sup>diet (3028.0 Kcal/kg) (ALP), restricted commercial Purina<sup>® </sup>diet (RAP), <it>ad libitum </it>semi-purified AIN-93 diet (3802.7 Kcal/kg) (ALD) and restricted semi-purified AIN-93 diet (RAD). The animals performed LM at the end of the experiment, 48 h before euthanasia. Comparisons between groups were performed by analysis of variance (p < 0,05).</p> <p>Results</p> <p>At the end of the experiment, the weights of the rats in the groups with the restricted diets were significantly lower than those in the groups with <it>ad libitum </it>diet intakes. In addition, the ALD group had higher amounts of adipose tissue. With respect to energetic substrates, the groups subjected to diet restriction had significantly higher levels of liver and muscle glycogen. There were no differences between the groups with respect to AT; however, the ALD group had lower lactatemia at the AT intensity and higher Tlim than the other groups.</p> <p>Conclusions</p> <p>We conclude that dietary restriction induces changes in energetic substrates and that <it>ad libitum </it>intake of a semi-purified AIN-93 diet results in an increase in adipose tissue, likely reducing the density of the animals in water and favouring their performance during the swimming exercises.</p

    Selective antagonism at dopamine D3 receptors enhances monoaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex

    No full text
    Recent neuroanatomical and functional investigations focusing on dopamine (DA) D(3) receptors have suggested a potential role of this receptor in psychiatric diseases such as schizophrenia and drug dependence. In line with the key role of the prefrontal cortex in psychiatric disorders, the present study aimed at assessing the effects of the acute systemic administration of the selective DA D(3) receptor antagonist SB-277011-A on the in vivo extracellular levels of monoamines (DA, norepinephrine (NE), and serotonin (5-HT)) and acetylcholine (ACh) in the anterior cingulate subregion of the medial prefrontal cortex. The in vivo neurochemical profile of SB-277011-A (10 mg/kg, i.p.) in the anterior cingulate cortex was compared with both typical and atypical antipsychotics including clozapine (10 mg/kg, s.c.), olanzapine (10 mg/kg, s.c.), sulpiride (10 mg/kg, s.c.), and haloperidol (0.5 mg/kg, s.c.). The acute administration of SB-277011-A, clozapine, and olanzapine produced a significant increase in extracellular levels of DA, NE, and ACh without affecting levels of 5-HT. Sulpiride also significantly increased extracellular DA, but with a delayed onset over SB-277011-A, clozapine, and olanzapine. In contrast, haloperidol failed to alter any of the three monoamines and ACh in the anterior cingulate cortex. These findings add to a growing body of evidence suggesting a differentiation between typical and atypical antipsychotic drugs (APDs) in the anterior cingulate cortex and a role of DA D(3) receptors in desired antipsychotic drug profile. Similar to their effects on DA and NE, SB-277011-A, clozapine, and olanzapine increased extracellular levels of ACh, whereas haloperidol and sulpiride did not alter ACh. The results obtained in the present study provide evidence of the important role of DA D(3) receptors in the effect of pharmacotherapeutic agents that are used for the treatment of psychiatric disorders such as schizophrenia and drug dependence
    corecore