1,580 research outputs found

    Chiral Recognition: A Spin-Driven Process in Chiral Oligothiophene. A Chiral-Induced Spin Selectivity (CISS) Effect Manifestation

    Get PDF
    In this paper it is experimentally demonstrated that the electron-spin/molecular-handedness interaction plays a fundamental role in the chiral recognition process. This conclusion is inferred comparing current versus potential (I-V) curves recorded using chiral electrode surfaces, which are obtained via chemisorption of an enantiopure thiophene derivative: 3,3 & PRIME;-bibenzothiophene core functionalized with 2,2 & PRIME;-bithiophene wings (BT2T4). The chiral recognition capability of these chiral-electrodes is probed via cyclic voltammetry measurements, where, Ag nanoparticles (AgNPs) capped with enantiopure BT2T4 (BT2T4@AgNP) are used as the chiral redox probe. Then, the interface handedness is explored by recording spin-polarized I-V curves in spin-dependent electrochemistry (SDE) and magnetic-conductive atomic force microscopy (mc-AFM) experiments. The quality of the interfaces is thoroughly cross-checked using X-ray photoemission spectroscopy, Raman, electrodesorption measurements, which further substantiate the metal(electrode)-sulfur(thiophene) central role in the chemisorption process. Spin-polarization values of about 15% and 30% are obtained in the case of SDE and mc-AFM experiments, respectively.It is demonstrated that probing the handedness of a chiral system (here a chiral-electrode-surface/solution interface) by using a spin-polarized current, allows for chiral recognition. This conclusion is inferred by tight comparison with cyclic voltammetry results, where the handedness of the "chiral-electrode-surface/solution interface" is recognized by using an enantiopure chiral redox couple.imag

    Personal Drug Selection: Problem-Based Learning in Pharmacology: Experience from a Medical School in Nepal

    Get PDF
    BACKGROUND: At the Manipal College of Medical Sciences, Pokhara, Nepal, Pharmacology is taught during the first four semesters of the undergraduate medical course. Personal or P-drug selection is an important exercise. The present study was carried out to obtain student opinion about the P-drug learning sessions, the assessment examinations, and on the small group dynamics. METHOD: The practical sessions on P-drug selection are carried out in small groups. Student feedback about the session was obtained using focus group discussions. The focus groups were selected to represent both genders and the three main nationalities, Nepalese, Indians, and Sri Lankans. There were four Nepalese, five Indians, and three Sri Lankans. Within each nationality and gender category the students were randomly selected. The respondents were explained the objectives of the study and were invited to participate. Written informed consent was obtained. The discussion lasted around two hours and was conducted in the afternoon in two groups of six students each. The first author (PRS) acted as a facilitator. The responses were recorded and analyzed qualitatively. RESULTS: The overall student opinion was positive. Around 25% (3 respondents) of respondents were confused about whether P-drugs were for a disease or a patient. Group consensus was commonly used to give numerical values for the different criteria. The large number of brands created problems in calculating cost. The students wanted more time for the exercise in the examination. Formative assessment during the learning sessions may be considered. The group members usually got along well. Absenteeism was a problem and not all members put in their full effort. The physical working environment should be improved. CONCLUSIONS: Based on what the students say, the sessions on P-drugs should be continued and strengthened. Modifications in the sessions are required. Sessions during the clinical years and internship training can be considered

    Evaluation of risks impeding sustainable mining using Fermatean fuzzy score function based SWARA method

    Get PDF
    Sustainability in the mining and raw materials sector is a key target in the EU Green deal agenda. The aim of this work is to determine the degree of importance of risks that may impede sustainable mining, considering UN Sustainable Development Goals (SDGs) indicators and EU initiatives, taking as a case study the mining sector in Greece. A total of 49 risks for sustainable mining, under six categories, were identified by means of expert consultation and review of the literature. The identification and prioritization of potential risks can provide a pathway towards sustainable mining operations. The risks factors weighting is enhanced using a new Fermatean fuzzy score function with Stepwise Weight Assessment Ratio Analysis (SWARA). The proposed model is a powerful tool to handle the uncertainties and inaccuracies in the information regarding the weights of the risks. The main research findings indicate that the most important risks for sustainable mining in Greece are irresponsible mining, the lack of license to operate, and poor environmental monitoring, which are directly connected to the aim and scope of SDG12: responsible consumption and production. In addition, according to the results the category with the highest risk for sustainable mining is the one of “Risk to Environment”. A complete list of risks and risk categories, and their ranking is presented and discussed creating a priority of actions in the framework of European and international initiatives to set a road map to sustainable mining. This work provides a benchmark for future studies, with the aim of providing a tool for evaluating and ranking global risk factors that may affect sustainable mining development

    Lessons to be learnt from Leishmania studies

    Get PDF
    Leishmaniasis is a disease caused by infection with the protozoan parasite Leishmania, which is responsible for three main types of disease: cutaneous leishmaniasis, visceral leishmaniasis and mucocutaneous leishmaniasis based to the site of infection for the particular species. This presents a major challenge to successful drug treatment, as a drug must not only reach antileishmanial concentrations in infected macrophages, the parasites' host cell, but also reach infected cells in locations specific to the type of disease. In this paper we discuss how studies using Leishmania have contributed to our knowledge on how drug delivery systems can be used to improve drug efficacy and delivery

    Haploinsufficiency for Translation Elongation Factor eEF1A2 in Aged Mouse Muscle and Neurons Is Compatible with Normal Function

    Get PDF
    Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2

    Development of a biosensor for urea assay based on amidase inhibition, using an ion-selective electrode

    Get PDF
    A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition

    Identification of a novel Leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spermatogenesis is comprised of a series of highly regulated developmental changes that transform the precursor germ cell into a highly specialized spermatozoon. The last phase of spermatogenesis, termed spermiogenesis, involves dramatic morphological change including formation of the acrosome, elongation and condensation of the nucleus, formation of the flagella, and disposal of unnecessary cytoplasm. A prominent cytoskeletal component of the developing spermatid is the manchette, a unique microtubular structure that surrounds the nucleus of the developing spermatid and is thought to assist in both the reshaping of the nucleus and redistribution of spermatid cytoplasm. Although the molecular motor KIFC1 has been shown to associate with the manchette, its precise role in function of the manchette and the identity of its testis specific protein partners are unknown. The purpose of this study was to identify proteins in the testis that interact with KIFC1 using a yeast 2 hybrid screen of a testis cDNA library.</p> <p>Results</p> <p>Thirty percent of the interacting clones identified in our screen contain an identical cDNA encoding a 40 kD protein. This interacting protein has 4 leucine-rich repeats in its amino terminal half and is expressed primarily in the testis; therefore we have named this protein testis leucine-rich repeat protein or TLRR. TLRR was also found to associate tightly with the KIFC1 targeting domain using affinity chromatography. In addition to the leucine-rich repeats, TLRR contains a consensus-binding site for protein phosphatase-1 (PP1). Immunocytochemistry using a TLRR specific antibody demonstrates that this protein is found near the manchette of developing spermatids.</p> <p>Conclusion</p> <p>We have identified a previously uncharacterized leucine-rich repeat protein that is expressed abundantly in the testis and associates with the manchette of developing spermatids, possibly through its interaction with the KIFC1 molecular motor. TLRR is homologous to a class of regulatory subunits for PP1, a central phosphatase in the reversible phosphorylation of proteins that is key to modulation of many intracellular processes. TLRR may serve to target this important signaling molecule near the nucleus of developing spermatids in order to control the cellular rearrangements of spermiogenesis.</p

    Experimental Granulomatous Pulmonary Nocardiosis in BALB/C Mice

    Get PDF
    Pulmonary nocardiosis is a granulomatous disease with high mortality that affects both immunosuppressed and immunocompetent patients. The mechanisms leading to the establishment and progression of the infection are currently unknown. An animal model to study these mechanisms is sorely needed. We report the first in vivo model of granulomatous pulmonary nocardiosis that closely resembles human pathology. BALB/c mice infected intranasally with two different doses of GFP-expressing Nocardia brasiliensis ATCC700358 (NbGFP), develop weight loss and pulmonary granulomas. Mice infected with 109 CFUs progressed towards death within a week while mice infected with 108 CFUs died after five to six months. Histological examination of the lungs revealed that both the higher and lower doses of NbGFP induced granulomas with NbGFP clearly identifiable at the center of the lesions. Mice exposed to 108 CFUs and subsequently to 109 CFUs were not protected against disease severity but had less granulomas suggesting some degree of protection. Attempts to identify a cellular target for the infection were unsuccessful but we found that bacterial microcolonies in the suspension used to infect mice were responsible for the establishment of the disease. Small microcolonies of NbGFP, incompatible with nocardial doubling times starting from unicellular organisms, were identified in the lung as early as six hours after infection. Mice infected with highly purified unicellular preparations of NbGFP did not develop granulomas despite showing weight loss. Finally, intranasal delivery of nocardial microcolonies was enough for mice to develop granulomas with minimal weight loss. Taken together these results show that Nocardia brasiliensis microcolonies are both necessary and sufficient for the development of granulomatous pulmonary nocardiosis in mice
    corecore