580 research outputs found
Recommended from our members
Reversibly binding resin for algal harvest and concentration
The present invention includes a method for harvesting or separating one or more biological cells from an aqueous feed, a stream, a suspension, or any combinations thereof by providing the aqueous feed, the stream, or the suspension comprising the one or more biological cells in a tank or a vessel; providing one or more ion-exchange resins, wherein the ion-exchange resin is an anion-exchange resin; contacting the anion-exchange resin with the aqueous feed; binding the one or more biological cells to the anion-exchange resin; releasing or eluting the bound one or more biological cells by changing the pH; and collecting the released one or more biological cells to obtain a concentrated slurry or suspension of the one or more biological cells.Board of Regents, University of Texas Syste
Murine T-Lymphomas Corresponding to the Immature CD4-8+ Thymocyte Subset
N-methyl-N-nitrosourea induces murine CD4-8+ T-lymphomas that express high levels
of J11d and low levels of CD5 antigens, a phenotype characteristic of immature CD4-8+
thymocytes. This assignment is supported by the fact that CD4-8+ lymphoma cell lines
acquire CD4 expression after intrathymic (i.t.) transfer, a finding consistent with the
established precursor potential of the normal immature CD4-8+ subset. CD4+8+ lymphomas recovered after i.t. transfer maintain a CD4+8+ phenotype in long-term culture. Northern blot analyses reveal that CD4 expression is regulated at the
transcriptional level in immature CD4-8+ and CD4+8+ cell lines. CD4-8+ lymphomas
express low levels of functional CD3/TCR complexes that mediate intracellular Ca2+
mobilization in response to CD3 or α/β-TCR monoclonal antibody. These data suggest
that the immature CD4-8+ subset contains cells capable of undergoing TCR-mediated
signaling and selection events. In contrast to normal immature CD4-8+ cells, which
comprise a heterogeneous and transient subset, the CD4-8+ lymphoma lines provide
stable, monoclonal models of the immature CD4-8+ stage of thymocyte development
Confocal and multiphoton imaging of intracellular Ca<sup>2+</sup>
This chapter compares the imaging capabilities of a range of systems including multiphoton microscopy in regard to measurements of intracellular Ca<sup>2+</sup> within living cells. In particular, the excitation spectra of popular fluorescent Ca<sup>2+</sup> indicators are shown during 1P and 2P excitation. The strengths and limitations of the current indicators are discussed along with error analysis which highlights the value of matching the Ca<sup>2+</sup> affinity of the dye to a particular aspect of Ca<sup>2+</sup> signaling. Finally, the combined emission spectra of Ca<sup>2+</sup> and voltage sensitive dyes are compared to allow the choice of the optimum combination to allow simultaneous intracellular Ca<sup>2+</sup> and membrane voltage measurement
Use of Anion Exchange Resins for One-Step Processing of Algae from Harvest to Biofuel
Some microalgae are particularly attractive as a renewable feedstock for biodiesel production due to their rapid growth, high content of triacylglycerols, and ability to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost prohibitive in part due to the need to pump and process large volumes of dilute algal suspensions. In an effort to circumvent this problem, we have explored the use of anion exchange resins for simplifying the processing of algae to biofuel. Anion exchange resins can bind and accumulate the algal cells out of suspension to form a dewatered concentrate. Treatment of the resin-bound algae with sulfuric acid/methanol elutes the algae and regenerates the resin while converting algal lipids to biodiesel. Hydrophobic polymers can remove biodiesel from the sulfuric acid/methanol, allowing the transesterification reagent to be reused. We show that in situ transesterification of algal lipids can efficiently convert algal lipids to fatty acid methyl esters while allowing the resin and transesterification reagent to be recycled numerous times without loss of effectiveness.Center for Electromechanic
Development of fluorescent probes for bioimaging applications
Fluorescent probes, which allow visualization of cations such as Ca2+, Zn2+ etc., small biomolecules such as nitric oxide (NO) or enzyme activities in living cells by means of fluorescence microscopy, have become indispensable tools for clarifying functions in biological systems. This review deals with the general principles for the design of bioimaging fluorescent probes by modulating the fluorescence properties of fluorophores, employing mechanisms such as acceptor-excited Photoinduced electron Transfer (a-PeT), donor-excited Photoinduced electron Transfer (d-PeT), and spirocyclization, which have been established by our group. The a-PeT and d-PeT mechanisms are widely applicable for the design of bioimaging probes based on many fluorophores and the spirocyclization process is also expected to be useful as a fluorescence off/on switching mechanism. Fluorescence modulation mechanisms are essential for the rational design of novel fluorescence probes for target molecules. Based on these mechanisms, we have developed more than fifty bioimaging probes, of which fourteen are commercially available. The review also describes some applications of the probes developed by our group to in vitro and in vivo systems
Growing Pollen Tubes Possess a Constitutive Alkaline Band in the Clear Zone and a Growth-dependent Acidic Tip
Using both the proton selective vibrating electrode to probe the extracellular currents and ratiometric wide-field fluorescence microscopy with the indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran to image the intracellular pH, we have examined the distribution and activity of protons (H+) associated with pollen tube growth. The intracellular images reveal that lily pollen tubes possess a constitutive alkaline band at the base of the clear zone and an acidic domain at the extreme apex. The extracellular observations, in close agreement, show a proton influx at the extreme apex of the pollen tube and an efflux in the region that corresponds to the position of the alkaline band. The ability to detect the intracellular pH gradient is strongly dependent on the concentration of exogenous buffers in the cytoplasm. Thus, even the indicator dye, if introduced at levels estimated to be of 1.0 μM or greater, will dissipate the gradient, possibly through shuttle buffering. The apical acidic domain correlates closely with the process of growth, and thus may play a direct role, possibly in facilitating vesicle movement and exocytosis. The alkaline band correlates with the position of the reverse fountain streaming at the base of the clear zone, and may participate in the regulation of actin filament formation through the modulation of pH-sensitive actin binding proteins. These studies not only demonstrate that proton gradients exist, but that they may be intimately associated with polarized pollen tube growth
Ca2+-Mg2+-dependent ATP-ase activity in hemodialyzed children. Effect of a hemodialysis session
In the course of chronic kidney disease (CKD) the intracellular erythrocyte calcium (Cai2+) level increases along with the progression of the disease. The decreased activity of Ca2+-Mg2+-dependent ATP-ase (PMCA) and its endogenous modulators calmodulin (CALM), calpain (CANP), and calpastatin (CAST) are all responsible for disturbed calcium metabolism. The aim of the study was to analyze the activity of PMCA, CALM, and the CANP-CAST system in the red blood cells (RBCs) of hemodialyzed (HD) children and to estimate the impact of a single HD session on the aforementioned disturbances. Eighteen patients on maintenance HD and 30 healthy subjects were included in the study. CALM, Cai2+ levels and basal PMCA (bPMCA), PMCA, CANP, and CAST activities were determined in RBCs before HD, after HD, and before the next HD session. Prior to the HD session, the level of Cai2+ and the CAST activity were significantly higher, whereas bPMCA, PMCA, and CANP activities and the CALM level were significantly lower than in controls. After the HD session, the Cai2+ concentration and the CAST activity significantly decreased compared with the basal values, whereas the other parameters significantly increased, although they did not reach the levels of healthy children. The values observed prior to both HD sessions were similar. Cai2+ homeostasis is severely disturbed in HD children, which may be caused by the reduction in the PMCA activity, CALM deficiency, and CANP-CAST system disturbances. A single HD session improved these disturbances but the effect is transient
Actin depletion initiates events leading to granule secretion at the immunological synapse.
Cytotoxic T lymphocytes (CTLs) use polarized secretion to rapidly destroy virally infected and tumor cells. To understand the temporal relationships between key events leading to secretion, we used high-resolution 4D imaging. CTLs approached targets with actin-rich projections at the leading edge, creating an initially actin-enriched contact with rearward-flowing actin. Within 1 min, cortical actin reduced across the synapse, T cell receptors (TCRs) clustered centrally to form the central supramolecular activation cluster (cSMAC), and centrosome polarization began. Granules clustered around the moving centrosome within 2.5 min and reached the synapse after 6 min. TCR-bearing intracellular vesicles were delivered to the cSMAC as the centrosome docked. We found that the centrosome and granules were delivered to an area of membrane with reduced cortical actin density and phospholipid PIP2. These data resolve the temporal order of events during synapse maturation in 4D and reveal a critical role for actin depletion in regulating secretion.Funding was provided by the Wellcome Trust through Principal Research Fellowships
(075880 and 103930) to G.M.G. and a Strategic Award (100140) to
the Cambridge Institute for Medical Research (CIMR). A.T.R. is an NIH-OxCam
scholar supported by funding to J.L.-S. from the Eunice Shriver National Institute
of Child Health and Human Development.This is the final version. It was first published by Elsevier at http://www.cell.com/immunity/abstract/S1074-7613%2815%2900173-9
An early history of T cell-mediated cytotoxicity.
After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications
- …