86 research outputs found

    Chemometric Strategies for Sensitive Annotation and Validation of Anatomical Regions of Interest in Complex Imaging Mass Spectrometry Data

    Get PDF
    Imaging mass spectrometry (IMS) is a promising new chemical imaging modality that generates a large body of complex imaging data, which in turn can be approached using multivariate analysis approaches for image analysis and segmentation. Processing IMS raw data is critically important for proper data interpretation and has significant effects on the outcome of data analysis, in particular statistical modeling. Commonly, data processing methods are chosen based on rational motivations rather than comparative metrics, though no quantitative measures to assess and compare processing options have been suggested. We here present a data processing and analysis pipeline for IMS data interrogation, processing and ROI annotation, segmentation, and validation. This workflow includes (1) objective evaluation of processing methods for IMS datasets based on multivariate analysis using PCA. This was then followed by (2) ROI annotation and classification through region-based active contours (AC) segmentation based on the PCA component scores matrix. This provided class information for subsequent (3) OPLS-DA modeling to evaluate IMS data processing based on the quality metrics of their respective multivariate models and for robust quantification of ROI-specific signal localization. This workflow provides an unbiased strategy for sensitive annotation of anatomical regions of interest combined with quantitative comparison of processing procedures for multivariate analysis allowing robust ROI annotation and quantification of the associated molecular histology

    Correlative Chemical Imaging and Spatial Chemometrics Delineate Alzheimer Plaque Heterogeneity at High Spatial Resolution

    Get PDF
    We present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 μm). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution. We demonstrate the method’s potential through its application toward delineating chemical traits of Alzheimer’s disease (AD) pathology. Here, trimodal MALDI MSI of transgenic AD mouse brain delineates beta-amyloid (Aβ) plaque-associated co-localization of lipids and Aβ peptides. Finally, we establish an improved image fusion approach for correlative MSI and functional fluorescence microscopy. This allowed for high spatial resolution (300 nm) prediction of correlative, multimodal MSI signatures toward distinct amyloid structures within single plaque features critically implicated in Aβ pathogenicity

    Structural Amyloid Plaque Polymorphism is Associated with Distinct Lipid Accumulations Revealed by Trapped Ion Mobility Mass Spectrometry Imaging (TIMS MSI)

    Get PDF
    Understanding of Alzheimer’s disease (AD) pathophysiology, requires molecular assessment of how key pathological factors, specifically amyloid β (Aβ) plaques, influence the surrounding microenvironment. Here, neuronal lipids have been implicated in Aβ) plaque pathology, though the lipid microenvironment in direct proximity to Aβ plaques are still not fully resolved. A further challenge is the microenvironmental molecular heterogeneity, across structurally polymorphic Aβ features - such as diffuse, immature and mature, fibrillary aggregates, whose resolution requires the integration of advanced, multimodal chemical imaging tools. Herein, we used matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) trapped ion mobility spectrometry Time-of-Flight (TIMS TOF) in combination with hyperspectral confocal microscopy to probe the lipidomic microenvironment associated with structural polymorphism of Aβ plaques in transgenic Alzheimer’s disease mice (tgAPPSWE). Using on tissue and ex situ validation, TIMS MS/MS facilitated unambiguous identification of isobaric lipid species that showed plaque pathology associated localizations. Integrated multivariate imaging data analysis revealed multiple, Aβ plaque enriched lipid patterns for gangliosides (GM), phosphoinositols (PI), phosphoethanolamines (PE) and phosphatidic acids (PA). Conversely, sulfatides (ST), cardiolipins (CL) and polyunsaturated fatty acid conjugated -phosphoserines (PS) and - PE were depleted at plaques. Hyperspectral amyloid imaging further delineated unique distribution of PA, PE to mature plaque core regions, while PI, LPI, GM2 and GM3 localized to immature Aβ aggregates present within the periphery of individual Aβ plaques. Finally, we followed AD pathology associated lipid changes over time, identifying plaque growth and maturation to be characterized by peripheral accumulation of PI (18:0/22:6). Together, these data demonstrate the potential of multimodal imaging approaches to overcome limitations associated with conventional advanced MS imaging applications. This allowed for differentiation of both distinct lipid components in a complex micro environment, as well as their correlation to disease relevant amyloid plaque polymorphs

    Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

    Get PDF
    A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.Comment: Published in Physical Review Letter

    Proliferation of Acid-Secretory Cells in the Kidney during Adaptive Remodelling of the Collecting Duct

    Get PDF
    The renal collecting duct adapts to changes in acid-base metabolism by remodelling and altering the relative number of acid or alkali secreting cells, a phenomenon termed plasticity. Acid secretory A intercalated cells (A-IC) express apical H+-ATPases and basolateral bicarbonate exchanger AE1 whereas bicarbonate secretory B intercalated cells (B-IC) express basolateral (and apical) H+-ATPases and the apical bicarbonate exchanger pendrin. Intercalated cells were thought to be terminally differentiated and unable to proliferate. However, a recent report in mouse kidney suggested that intercalated cells may proliferate and that this process is in part dependent on GDF-15. Here we extend these observations to rat kidney and provide a detailed analysis of regional differences and demonstrate that differentiated A-IC proliferate massively during adaptation to systemic acidosis. We used markers of proliferation (PCNA, Ki67, BrdU incorporation) and cell-specific markers for A-IC (AE1) and B-IC (pendrin). Induction of remodelling in rats with metabolic acidosis (with NH4Cl for 12 hrs, 4 and 7 days) or treatment with acetazolamide for 10 days resulted in a larger fraction of AE1 positive cells in the cortical collecting duct. A large number of AE1 expressing A-IC was labelled with proliferative markers in the cortical and outer medullary collecting duct whereas no labeling was found in B-IC. In addition, chronic acidosis also increased the rate of proliferation of principal collecting duct cells. The fact that both NH4Cl as well as acetazolamide stimulated proliferation suggests that systemic but not urinary pH triggers this response. Thus, during chronic acidosis proliferation of AE1 containing acid-secretory cells occurs and may contribute to the remodelling of the collecting duct or replace A-IC due to a shortened life span under these conditions

    Measurement of the Pseudorapidity and Centrality Dependence of the Transverse Energy Density in Pb-Pb Collisions at √sNN=2.76  TeV

    Get PDF
    The transverse energy (E-T) in Pb-Pb collisions at 2.76 TeV nucleon-nucleon center-of-mass energy (root s(NN)) has been measured over a broad range of pseudorapidity (eta) and collision centrality by using the CMS detector at the LHC. The transverse energy density per unit pseudorapidity (dE(T)/d eta) increases faster with collision energy than the charged particle multiplicity. This implies that the mean energy per particle is increasing with collision energy. At all pseudorapidities, the transverse energy per participating nucleon increases with the centrality of the collision. The ratio of transverse energy per unit pseudorapidity in peripheral to central collisions varies significantly as the pseudorapidity increases from eta = 0 to vertical bar eta vertical bar = 5.0. For the 5% most central collisions, the energy density per unit volume is estimated to be about 14 GeV/fm(3) at a time of 1 fm/c after the collision. This is about 100 times larger than normal nuclear matter density and a factor of 2.6 times higher than the energy density reported at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider

    Measurement of the top-quark mass in tt¯ events with dilepton final states in pp collisions at √s = 7 TeV

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution License.-- Chatrchyan, S. et al.The top-quark mass is measured in proton-proton collisions at s√=7 TeV using a data sample corresponding to an integrated luminosity of 5.0 fb−1 collected by the CMS experiment at the LHC. The measurement is performed in the dilepton decay channel tt¯→(ℓ+νℓb)(ℓ−ν¯¯ℓb¯), where ℓ=e,μ. Candidate top-quark decays are selected by requiring two leptons, at least two jets, and imbalance in transverse momentum. The mass is reconstructed with an analytical matrix weighting technique using distributions derived from simulated samples. Using a maximum-likelihood fit, the top-quark mass is determined to be 172.5±0.4 (stat.)±1.5 (syst.) GeV.Acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Austrian Science Fund (FWF); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.Peer Reviewe
    corecore