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Abstract. Imaging mass spectrometry (IMS) is a
promising new chemical imaging modality that
generates a large body of complex imaging data,
which in turn can be approached using multivar-
iate analysis approaches for image analysis and
segmentation. Processing IMS raw data is criti-
cally important for proper data interpretation and
has significant effects on the outcome of data
analysis, in particular statistical modeling. Com-
monly, data processing methods are chosen

based on rational motivations rather than comparative metrics, though no quantitative measures to assess and
compare processing options have been suggested. We here present a data processing and analysis pipeline for
IMS data interrogation, processing and ROI annotation, segmentation, and validation. This workflow includes (1)
objective evaluation of processingmethods for IMS datasets based onmultivariate analysis using PCA. This was
then followed by (2) ROI annotation and classification through region-based active contours (AC) segmentation
based on the PCA component scores matrix. This provided class information for subsequent (3) OPLS-DA
modeling to evaluate IMS data processing based on the quality metrics of their respective multivariate models
and for robust quantification of ROI-specific signal localization. This workflow provides an unbiased strategy for
sensitive annotation of anatomical regions of interest combined with quantitative comparison of processing
procedures for multivariate analysis allowing robust ROI annotation and quantification of the associated molec-
ular histology.
Keywords: Imaging mass spectrometry (IMS), Multivariate data analysis (MVA), Data processing, Image
segmentation, Regions of interest (ROIs), Active contour segmentation (ACS)
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Introduction

Imaging mass spectrometry (IMS) allows delineation of his-
tological features based on complex chemical fingerprints.

This in turn provides comprehensive insight in molecular
mechanisms associated with histopathological processes [1].
These tools are now able to supplement histological staining-
based assessment methods, as commonly used in pathology.
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IMS dramatically expands the histochemical dimensionality in
pathological imaging by providing broad molecular informa-
tion, about metabolites, lipids, peptides, glycans, and small
proteins (for review see [2, 3]).

Multivariate tools are increasingly used to interrogate
complex IMS data to identify true molecular localization
in situ [4–7]. Optimal data pre-processing, including
normalization and transformation, is critical to interpret
IMS data and to avoid possible artifacts that may lead to
misinterpretation and wrong assignment of histologically
relevant chemical co-localizations [8–12]. Normalization
of the IMS data is typically used to remove the system-
atic variation caused by non-biologically relevant arti-
facts, such as cutting artifacts, matrix inhomogeneity,
and gradual decrease in signal associated with duration
of IMS analysis. Here, total ion current (TIC), median,
mean root mean square (RMS), and normalization to the
maximum peak, to a various extend compensate for such
artifacts. A great risk associated with these common
normalization strategies is over-normalization leading to
removal of weak, but biologically highly-relevant molec-
ular signal. Several studies have evaluated the effects of
data processing for interpretation and improved visuali-
zation of IMS data as well as subsequent multivariate
analysis-based image segmentation [5, 10, 11, 13–15].

However, there is a high demand for unbiased strategies to
evaluate IMS data processing and its effects on multivariate
image analysis including objective detection of histological
region of interest (ROI). In line with this, a further critical issue
when analyzing IMS data is then the accurate outlining of these
histological features as ROI for subsequent extraction of the
associated chemical content. This ROI annotation and classifi-
cation step is commonly done by outlining these ROI manual-
ly, although a variety of methods such as thresholding and
clustering methods have been presented for this purpose [9,
16]. As these methods, however, all show limitations with
respect to a sensitivity and accuracy, there is a need for intro-
ducing other tools for outlining ROI shapes in a straightforward
and accurate manner.

We here describe a chemometric strategy for interroga-
tion complex IMS data, to accurately identify anatomical
regions of interest (ROIs) and quantify the chemical co-
localization associated with these regions. For this we,
evaluate IMS raw data processing and its consequences
for multivariate image analysis. Here, we step outside the
typical IMS processing toolbox, comprising common nor-
malization methods (such as TIC or RMS) and processing
methods (such as PCA and segmentation), and introduce
conventional computational image-processing tools and
advances, semi-supervised chemometric tools. Using a
three-step MVA strategy involving image PCA, region-
based active contour segmentation, and orthogonal projec-
tions to latent structures discriminant analysis (OPLS-DA),
we quantify the performance of different preprocessing
procedures, i.e., normalizations and transformations based
on the quality metrics of the multivariate models.

Experimental
Animals and Tissue Preparation

Fresh brain tissue samples were obtained from female, 18-
month-old C57BL/6 mice (n = 3) from Charles River Labora-
tories (Sulzfeld, Germany). Animals were reared ad libitum at
an animal facility at Uppsala University under a 12/12 light
cycle. The animals were anesthetized with isoflurane and
sacrificed by decapitation. The brains were dissected quickly
with less than 3 min post-mortem delay and frozen on dry ice.
Animal procedures were approved by an ethical committee and
performed in compliance with national and local animal care
and use guidelines (DNr #C17/ 14 at Uppsala University).
Frozen tissue sections (12 μm) were cut in a cryostat micro-
tome (Leica CM 1520, Leica Biosystems, Nussloch, Germany)
at − 18 °C, and collected on indium tin oxide (ITO) conductive
glass slides (Bruker Daltonics, Bremen, Germany) and stored
at − 80 °C. Prior to analysis, tissue sections were thawed under
vacuum for 1 h.

MALDI Imaging MS

For MALDI imaging of lipids, 1.5 di-amino-naphthalene (1,5-
DAN) matrix was applied to the tissue sections using a TM
sprayer (HTX Technologies, Carrboro, NC, USA) combined
with a HPLC pump (Dionex P-580, Sunnyvale, CA, USA).
Before spraying, the solvent pump was purged with 70% ACN
at 500 μL/min for 10 min followed by manual rinse of matrix
loading loop using a syringe. A matrix solution containing
20 mg/mL 1,5-DAN in 70% ACN was sprayed onto the tissue
sections with the following instrumental parameters: nitrogen
flow (12 psi), spray temperature (80 °C), nozzle height
(40 mm), five passes with offsets and rotations, and spray
velocity (1250mm/min), and isocratic flow of 50 μL/min using
70% ACN as pushing solvent.

MALDI-IMS was performed on a MALDI TOF/TOF
UltrafleXtreme mass spectrometer equipped with SmartBeam
II Nd:YAG/355 nm laser. Lipid imaging was performed in
reflection negative mode with a source accelerating voltage of
− 20 kV. A mass range of 200–2500 Da was analyzed with 20
laser shots per pixel at a spatial resolution of 15 μm with laser
focus set to minimum. The mass resolution at m/z 800 was of
M/ΔM 20000. External calibration was carried out using pep-
tide calibration standard I (Bruker Daltonics).

Data Processing

IMS data processing was done using in house-developed
scripts in MATLAB R2018b with Bioinformatics Toolbox
4.11 and Image Processing Toolbox 10.3 (MathWorks, Inc.)
installed.MALDI imaging files were converted in FlexImaging
version 3.0 software (Bruker Daltonics) from *.mis format to
Analyze7.5 format before importing them into MATLAB. The
imaging raw data were reshaped into two-dimensional arrays
where each row represents a spectrum. Intensity transforma-
tions such as logarithms and the square root can be used as
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variance-stabilizing transformations. In here, we examined
log10, loge (ln), and square root transformations along with
normalization of the raw and transformed data using common
normalization methods including total ion current (TIC), me-
dian, mean root mean square (RMS), and normalization to the
maximum peak [8, 9]. Data arrays prepared for analysis were
concatenated with a pixel coordinate matrix and written to a
tab-delimited text file with m/z values in the abscissa header
information. The pixel coordinates lend themselves as unique
observation identifiers required for subsequent chemometric
modeling.

Multivariate Modeling and Data Analysis

Multivariate statistical modeling was performed in SIMCA
version 15.0.2 (Sartorius Stedim Biotech, Umeå, Sweden)
and included PCA and OPLS-DA [17, 18]. Data were mean
centered but not scaled unless otherwise stated. The number of
evaluated components was based on the predictive perfor-
mance (Q2) as determined by SIMCA’s seven-block cross-
validation [19]. To visualize the PCA and OPLS score images
of the individual components, the scores matrixes were trans-
ferred toMATLAB and reshaped to reorganize the score values
into the coordinate system of the original image. This proce-
dure generated score images of the analyzed sample surface,
where scores values can be represented by false-color intensity.
The corresponding loadings for the interpretation of the scores
were obtained from the SIMCA software directly. Segmenta-
tion of cerebellar anatomical regions of interest was achieved
through region-based active contour segmentation based on the
Chan-Vese algorithm [20]. The segmentation was performed
on the PCA score matrix calculated from ln-transformed data.
Initial contour localization was provided through rough out-
lines of the ROIs. Segmentation maps were evolved in 5–50
iterations, and refined with a smoothing factor of 0.1–0.3 and
hole-filling. Ambiguous and unassigned pixels were treated as
observations with missing class assignment. The unique binary
ROI maps were used to subset datasets for variance calcula-
tions, and reshaped into the categorical class information ma-
trix (Y-block) for OPLS-DA modeling. The terms R2X and
R2Y signify the cumulative explained fraction of variation in
the X-block and Y-block, respectively. Q2Y refers to the cu-
mulative predicted fraction of variation in the Y-block, accord-
ing to cross-validation.

Results and Discussion
Multivariate image analysis has been widely accepted as first
step for unbiased interrogation of complex, chemical imaging
data generated with imaging mass spectrometry.

A general issue when evaluating complex IMS data is the
technical variance. This variance complicates the robust and
sensitive identification of ROI and the quantitative analysis of
the ROI-associated MS peak data. Therefore, appropriate IMS
data preprocessing is required for robust biological interpreta-
tion and the recovery of truncated biologically meaningful

information including such of potentially small magnitude but
might be biologically relevant (e.g., biomarkers). Further, this
highlights the need for objective approaches to compare differ-
ent processing methods and to evaluate how they may affect
image data analysis and to outline relevant ROI. We, therefore,
set out to develop a chemometric strategy based onmultivariate
data analysis workflows for evaluating different IMS data
processing methods and their suitability for robust and sensi-
tive image segmentation and ROI annotation as well as to
quantify the chemical information associated with histological
regions of interest.

We established an objective, comparative approach based
on multivariate modeling to probe the effect of different IMS
data processingmethods, including transformation and normal-
ization. As an initial step, we investigated the different pro-
cessing methods on lipid imaging data retrieved from MALDI
imaging onmouse cerebellum using image PCA (Figures 1 and
2). We further expanded this approach to employ computation-
al methods for ROI segmentation, including active contour
(AC) segmentation (Figures 1 and 3). Finally, we evaluated
different normalization approaches, and the combination of
different transformation and normalization techniques by mul-
tivariate prediction models for the segmented regions of
interest.

PCA to Capture the Informative Variance

For the following study, we acquiredMALDI imagingMS data
of negative lipid species from mouse cerebellum that is
outlined by prominent anatomical ROIs including white matter
(WM), molecular layer (ML), granular layer (GL), and
Purkinje cell layer (PCL). As a first step following data pro-
cessing of IMS raw data using the various processing methods,
we performed image PCA-based multivariate analysis to eval-
uate the variance in the IMS dataset pre- and post-processing in
an unbiased way. The evaluated data processing methods in-
cluded transformations and normalization methods. Transfor-
mation operations included logarithmic (log, ln) and square
root (sqrt) transformations, while normalization approaches
included normalization to the total ion current (TIC), normal-
ization to the median, normalization to the mean, root mean
square normalization (RMS), and normalization to the maxi-
mum peak [8, 9]. Further, the combination of different trans-
formation and normalization techniques was also investigated.
Image PCA allowed us to interrogate and visualize variances
that are associated with anatomical structures.

When interrogating complex IMS data using multivariate
tools such as PCA, it is important to capture a maximum of
biological and biochemical variance, respectively, as this might
reveal differences in spatial concentration changes that are of
histopathological importance. This biological variance associ-
ated with anatomical features of interest might, however, be
significantly affected by the technical variation across the tissue
sample. This technical variation, in turn, will negatively affect
accurate ROI segmentation and quantification of the associated
chemical information encoded in the mass spectral data [21].
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Inspection of the most prominent PCA score images gener-
ated for each PCA of differentially processed IMS data re-
vealed significant differences with respect to feature abun-
dance. In detail, all processing and normalization approaches
enabled to outline the ML and WM (Figure 2a) as well as the
GL regions (Figure 2b) constituting the most prominent ana-
tomical ROI of the cerebellum. However, based on the pro-
cessing method, these features where detected with varying
degree of contrast and prominence. A comparison of the dif-
ferent score images is challenging and difficult to quantify as
the most prominent regions were outlined with all processing
approaches as well as in the raw data. However, detection of
these prominent regions in lower components can serve as one
indication for how various pre-processing methods stabilize
variance and improve data quality as further reflected in the
captured variance within these respective components as indi-
cated by the R2 value (Figure 2). Here, for median and TIC-

normalized data as well as in the raw data, the granular layer is
captured in component t6 with a R2 value ≤ 0.01. In contrast,
the region is captured in score t3 with higher R2 (0.1) using ln
and ln-median transformation (Figure 2b).

In addition, the most significant difference revealed by
the different processing methods was the detection of low
abundant histological features, such as the PCL. Here, ln
and ln-median transformation captured the PCL exclusive-
ly, while this was not achieved by the other processing
approaches, where the PCL was solely captured along with
other features (Figure 2c). Here, ln and ln-median trans-
formation gave the best contrast and allowed to sensitively
outline the Purkinje cell layer from the molecular layer and
granular layer (Figure 2c, ln: t21; ln-median: t23; and
replicates in Supporting Information Fig. S-2c, ln: t21;
and Supporting Information Fig. S-3c, ln: t16). These
results highlight that ln transformation has a significant

Figure 1. Schematic outline of the chemometric strategy for sensitive ROI annotation and the evaluation of IMS data processing
procedures. (1) Image PCA is performed to capture the chemical variance in the processed IMS datasets (Xp). (2) Generated PCA
score images are subjected to region-based active contour (AC) segmentation for the assignment of anatomical features (ROI) into a
Y-block, i.e., generation of class assignment. (3) The predictive performances of OPLS-DA models, based on the X- and Y-blocks,
are then used for the objective evaluation of the data processing methods applied in Xp

Figure 2. Selected PCA score (tn) images of the MALDI imaging dataset treated with different data processing methods highlight
the significant differences regarding feature representation; further PCA score images including those of replicates are provided in
the supporting information (Supporting Information Fig. S1-S3), area size 1.26 × 1.13 mm
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impact on minimizing inherent data variance allowing sen-
sitive ROI detection.

Spatial ROI Annotation Using Active Contour
Segmentation

Inspection of the PCA score images allows outlining anatom-
ical regions of interest. Here, we show that different processing
methods mitigate inherent technical variance to varying extent
and in turn allow detection of the various ROI. A small number
of PCA score images may be appreciated visually. However,
an objective evaluation of data processing methods as well as
comprehensive data mining to extract information from data
demands an approach that minimizes subjective bias and max-
imizes information gain and recovery. Therefore, we devel-
oped a strategy to investigate how the anatomical ROIs are
represented by differently processed data in terms of technical
variance and their potential in predictive multivariate

modeling. In order to enable the downstream application of
supervised multivariate techniques, we set out to partition the
dataset into anatomically meaningful ROI, i.e., segmentation,
for categorical class assignment corresponding to the genera-
tion of a Y-matrix. The majority of methods used for IMS data
segmentation are clustering-based methods often performed in
the PCA score domain [22–26]. In cluster analysis, data are
grouped into clusters based on their similarity in the feature
space (e.g., by Euclidean distance). However, common clus-
tering methods disregard a potential spatial coherence of the
observations (i.e. pixels) in the dataset as present in image data
[27–29]. Furthermore, cluster analysis generates clusters also
in uniform or unimodal distributed datasets, where no clusters
are expected [30]. Also, for noisy images or images with low
contrast, it may be challenging for cluster analysis to achieve a
meaningful and anatomically accurate segmentation. And
thereby, the presence of significant but low abundant features
may be missed [31, 32].

Figure 3. Active contour (AC) segmentation of imaging data into anatomical ROI in mouse cerebellum. (a) PCA score image of the
entire MALDI IMS-acquired tissue area and the investigated subset, respectively. The white square marks the region of the zoomed
view to the right. (b) Bright field microscopy image of the H&E-stained tissue section post IMS acquisition. Full view scale bar =
500 μm, zoomed view scale bar = 250 μm, area size 1.26 × 1.13mm. (c) AC segmentation in the PCA scores domain: seed (i.e., initial
localization information) for each ROI that was supplied to the AC segmentation algorithm to obtain the evolved ROI, i.e., binarymaps
after segmentation iterations. (d) Binary maps from AC segmentation of the microscopy image and overlays of binary maps of the
microscopy image (white) and IMS data (pink), respectively, including their overlap ratio. (e) Detailed view to highlight the accuracy of
AC segmentation based on the PCA scores matrix and (f) the issues arising in the microscopy image regarding PCL annotation; the
orange overlay corresponds to the evolved binary map of PCL based on the IMS data
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Therefore, for the segmentation of the imaging data in the
present study, we applied region-based active contour (AC)
segmentation in the PCA score domain. Region-based AC
segmentation is an iterative segmentation method based on
the Chan-Vese algorithm [20]. Thereby, an initially provided
contour (i.e., localization information) is evolved into the seg-
mentation of the proximal region in an iterative process (Sup-
plemental Information Movie 1). The segmentation is unbiased
with respect to shrinking or expanding and is not dependent on
edge functions to limit the evolution at the desired ROI bound-
aries. This allows to detect ROI even in very noisy images, and
whose boundaries are not necessarily defined by gradient or are
very smooth [20]. The AC segmentation was applied for ROI
definition on the PCA scores matrix ([t1, t2, ..., tn]) of ln-
transformed data chosen for its clarity and richness in desired
features (Figure 3a). In addition, we performed AC segmenta-
tion for ROI definition on brightfield microscopy images of
hematoxylin/eosin (HE) stainings obtained from the same tis-
sue section (Figure 3b). For both PCA and HE images, the ROI
binary maps generated with AC segmentation allowed the
categorical assignment of the original IMS spectra, i.e., pixels
to distinct ROI classes (Figure 3c, d). For AC segmentation on
PCA score images, accurate ROI binary maps pertaining to the
four investigated anatomical features of interest (WM, GL,
ML, PCL) were generated (Figure 3c).

Further, AC segmentation of the H&E microscopy images
allowed the segmentation of the major anatomical regions (i.e.,
ML, GL, and WM) with the resulting binary maps being in
good agreement with the binary maps obtained through seg-
mentation based on the PCA score matrix as expressed by
overlap ratio (Figure 3d, Supporting Information Fig. S4a,b).

However, segmentation of the PCL, as achieved for seg-
mentation of the PCA, on the microscopy image of H&E-
stained tissue was not successful (Figure 3e, f). This is ex-
plained that the information within the microscopy image is
provided by its three color channels only. In contrast, the PCA
score matrix provides the linear combinations of the entire
biochemical information within the IMS dataset, resulting in
a significant increase in chemical contrast. This in turn allows
for detection and definition of small histological features such
as the PCL which further highlights the potential of IMS for
molecular histology.

Minimizing Non-informative Variance
by Logarithmic Transformation

Mass spectral data from MALDI IMS analysis of biological
tissues are subject to non-informative variation due to different
factors not related to biological or biochemical variation. Var-
iation that affects the imaging data globally can arise from
ionization and matrix effects and is commonly remedied by
normalization of the spectral intensities [8]. However, IMS
datasets also contain variation in form of heteroscedastic noise
whereby the variance increases with increasing signal intensity.
Thus, signals with higher mean intensities also exhibit larger
variances. Datasets with a heteroscedastic error structure are

not suitable for statistical modeling with multivariate tech-
niques, as proper modeling requires a consistent noise structure
across the entire intensity range. A strategy to alleviate the
effects of heteroscedastic noise was previously demonstrated
[33, 34]. Here, a variance-stabilizing normalization based on
logarithmic transformation was demonstrated to significantly
improve the stability of peak intensities [33, 34].

In the present study, we adopted this strategy and
examined the variance-stabilizing effect of logarithmic
(log, ln) and square root (sqrt) transformations as well
as the combination of these transformations with normal-
ization methods. Examination of the noise structure re-
quires data to be of the same class, i.e., representing the
same chemical profiles. Therefore, we subdivided the
dataset into anatomical ROI using AC segmentation as
outlined above and extracted the majority of pixels of
each ROI, rather than selecting a smaller subset
manually.

On the scatter plots illustrated in Figure 4a, the standard
deviations (SD, σ) of each peak were sorted after mean peak
intensity. Here, the raw data displayed higher variances (σ2) for
peaks with higher mean peak intensities, i.e., a heteroscedastic
noise structure. Logarithmic transformation (ln) of the raw data
stabilized the variance in each of the anatomical regions. Fur-
thermore, the transformation improved the clustering on the
PCA score plot with a decreased number of observations
outside the 95% confidence interval (Figure 4b). Taken togeth-
er, image segmentation and examination of the ROI-specific
noise structure allows the selection of pertinent processing
methods for each ROI individually.

Multivariate Modeling (OPLS-DA) for Qualitative
and Quantitative Evaluation of IMS Data
Processing Methods

Based on the results showing the impact on normalization and
transformation on technical variance, it is of interest to evaluate
the different data processing methods on ROI detection and
image segmentation. However, an objective measure and qual-
ity metric, respectively, for comparing the performance of
processing methods for IMS data has not been previously
reported. Our aim was, therefore, to establish a chemometric
strategy for the objective evaluation of IMS data processing
methods for multivariate image analysis in particular.

The strategy is based on the evaluation of the descriptive
and predictive abilities (Q2) of OPLS-DAmodels built with the
processed data. The eventual aim was then to identify the ROI-
associated biochemical information conveyed in the best
performing model.

Following image PCA and AC segmentation of the
PCA scores, the ROIs were classified. We then generated
and evaluated OPLS-DA models for the differently proc-
essed IMS datasets. Here, the major anatomical regions,
WM, GL, ML, are projected in clusters on two predictive
components (t1 and t2) for all processing methods
(Figure 5a, b). The PCL clusters along the third
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component (t3) and was most prominently explained in
ln and ln-median transformed data, while only weakly
captured in median-normalized data (Figure 5a, b). Sim-
ilar results were obtained for the analysis of biological
replicates (Supporting Information Fig. S-5 and S-6).
When performing OPLS-DA, the third component was
initially not automatically included for TIC and median
normalization due to an arbitrary cutoff applied automat-
ically by the software on how much Q2 is increased by
including an additional component. However, adjustment
of this cutoff is required to balance sensitivity on the one
hand and potential overfitting of the model.

The contrast within the score images represents the
prominence of the underlying chemical profiles of the
individual anatomical regions in the acquired IMS

spectra . Pixels with miss ing class informat ion
(Figure 5c) obtained score values calculated based on
the similarity of their chemical profiles to class-
assigned pixels. We then compared the performance of
the different processing methods by evaluating the cor-
responding quality metrics of the generated OPLS-DA
model, including descriptive (R2X, R2Y) and predictive
characteristics (Q2X, Q2Y) (Figure 5d; Supporting
Information Fig. S5b and S6b).

Here, we observed across all three independent
datasets that ln transformation– and ln-median
transformation–yielded OPLS models with the highest
cumulative predictive ability reflected in the Q2 values.
This suggests ln transformation and ln-median

Figure 4. The effect of ln transformation as variance stabilizing transformation. (a) Scatter plots to illustrate the heteroscedastic data
structure and the effect of ln transformation on the various cerebellar ROI. (b) PCA score plots to illustrate the decreased spread and
the decreased number of observations outside the 95% confidence interval (oval) and improved clustering after ln transformation of
the data
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transformation are the most appropriate processing
methods for the dataset in this study.

We then inspected the corresponding loadings of the differ-
ent OPLS-DA models generated for the different processing
methods (Figure 6a). The aim was to identify the chemical
correlates associated with the respective anatomical ROI. Here,
ML, GL, WM, and PCL were outlined by single ion images of
dominant loadings in the corresponding OPLS scores
(Figure 6b). In detail, we observed that sulfatide species were
the most prominent chemical species associated with the white
matter though these species displayed also a strong localization
to the granular layer. Sulfatides are constituents of the myelin
sheath ensheathing axons which in turn constitute the white
matter and innervate the granular layer that constitutes mainly
cell bodies of small neurons, i.e., granular cells. In contrast, the

molecular layer, as main part of the gray matter, along with the
granular and Purkinje cell layers, constitutes mainly of cell
bodies. OPLS-DA separated the ML from the WM in t1 and
the most prominent loadings associated with this separation
included ceramide-1-phosphate (CerP) that localized specifi-
cally to the ML. This is well in line with previous findings,
where higher levels of CerP have been identified for the ML
[35–37]. For the GL, OPLS-DA revealed a number of
sulfatides that localized prominently to this region as a conse-
quence of the innervating nerve fibers as described previously
[36, 37]. Further, distinct phosphoinositol (PI) species, PI 38:3
and PI 38:2, were found to localize to the GL. In contrast, the
Purkinje cell layer was distinctively outlined by PI 38:4. This
differential localization of PI species with varying fatty acid
configuration is well in line with other data, reported previously

Figure 5. OPLS-DA modeling results from differentially processed data. (a) OPLS-DA scores images, area size 1.26 × 1.13 mm. (b)
OPLS-DA score plots with 95%confidence interval (oval). (c) Multicolormap of class assignments used for OPLS-DAmodeling:WM
white matter, GL granular layer, ML molecular layer, PCL Purkinje cell layer; black pixels are class-unassigned observations. (d)
OPLS-DAmodel qualitymetrics,R2Y andQ2Y, signifying the cumulative explained, respectively, predicted fraction of variation in the
Y-block
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[38]. These results further support the suitability of the here
presented approach to delineate biochemical localization pat-
terns associated with anatomical regions of interest.

For each of the ROI-specific lipid species, we evalu-
ated the effect of the different processing methods, with
respect to variance of the signal. Here, we observed that
ln and ln-median processing results in a significant de-
crease in signal variation of all the four lipid species
within the respective ROI. This is illustrated in both the
spread of the data as well as the relative standard devi-
ation. Here, e.g., for PI 38:4 in the PCL, the RSD
decreased from 0.54 to 0.16 and 0.12, upon ln transfor-
mation and ln median transformation/normalization, re-
spect ively (Figure 6c, replicates in Support ing

Information Fig. S-7). These results are in line with the
observations on multivariate modeling for ROI detection
(PCA) and validation (OPLS-DA), where ln and ln-
median processing gave the best performance. Similarly,
the single ion intensity statistics (Figure 6c) show that
data processing with ln and ln-median presents the best
alternative to robustly quantify ROI-specific chemical
localization in our IMS data.

Conclusions
Taken together, we developed a multivariate strategy for
robust ROI feature detection, image segmentation, and

Figure 6. (a) S-plots based on OPLS-DAmodeling results of ln-transformed data. (b) Single ion images of prominent peaks loading
for particular cerebellar ROI, area size 1.26 × 1.13 mm, colormap cividis [39]. (c) Box plots of mean-centered intensities of ions
localizing to the ROI before and after data processing, illustrating spread of the intensity values as well as standard deviation
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classification that enabled quantitative comparison of
ROI-associated biochemical localization patterns. We fur-
ther present a region-based, active contour segmentation
method that provided accurate segmentation of anatomi-
cal regions of interest. We demonstrate that data process-
ing methods have a strong impact on the feature detec-
tion and annotation. Here, ln transformation together with
median normalization gave the most robust data for
feature detection, ROI annotation, and image segmenta-
tion and quantification. These results highlight the need
to apply appropriate data processing tools for multivari-
ate modeling-based image segmentation in IMS.
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