842 research outputs found
The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003
Many past studies of cosmological gamma-ray bursts (GRBs) have been limited
because of the large distance to typical GRBs, resulting in faint afterglows.
There has long been a recognition that a nearby GRB would shed light on the
origin of these mysterious cosmic explosions, as well as the physics of their
fireballs. However, GRBs nearer than z=0.2 are extremely rare, with an
estimated rate of localisation of one every decade. Here, we report the
discovery of bright optical afterglow emission from GRB 030329. Our prompt
dissemination and the brilliance of the afterglow resulted in extensive
followup (more than 65 telescopes) from radio through X-ray bands, as well as
measurement of the redshift, z=0.169. The gamma-ray and afterglow properties of
GRB 030329 are similar to those of cosmological GRBs (after accounting for the
small distance), making this the nearest known cosmological GRB. Observations
have already securely identified the progenitor as a massive star that exploded
as a supernova, and we anticipate futher revelations of the GRB phenomenon from
studies of this source.Comment: 13 pages, 4 figures. Original tex
Enhancements in nocturnal surface ozone at urban sites in the UK
Analysis of diurnal patterns of surface ozone (O3) at multiple urban sites in the UK shows the occurrence of prominent nocturnal enhancements during the winter months (November–March). Whilst nocturnal surface ozone (NSO) enhancement events have been observed at other locations, this is the first time that such features have been demonstrated to occur in the UK and the second location globally. The observed NSO enhancement events in the UK were found to be so prevalent that they are clearly discernible in monthly diurnal cycles averaged over several years of data. Long-term (2000–2010) analysis of hourly surface ozone data from 18 urban background stations shows a bimodal diurnal variation during the winter months with a secondary nighttime peak around 0300 hours along with the primary daytime peak. For all but one site, the daily maxima NSO concentrations during the winter months exceeded 60 μg/m3 on >20 % of the nights. The highest NSO value recorded was 118 μg/m3. During the months of November, December, and January, the monthly averaged O3 concentrations observed at night (0300 h) even exceeded those observed in the daytime (1300 h). The analysis also shows that these NSO enhancements can last for several hours and were regional in scale, extending across several stations simultaneously. Interestingly, the urban sites in the north of the UK exhibited higher NSO than the sites in the south of the UK, despite their daily maxima being similar. In part, this seems to be related to the sites in the north typically having lower concentrations of nitrogen oxides
Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
Confined dense circumstellar material surrounding a regular type II supernova
With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, which sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ∼3 h after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ∼6 h post-explosion) spectra, map the distribution of material in the immediate environment (≲1015 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ∼1 yr prior to explosion at a high rate, around 10-3 solar masses per year. The complete disappearance of flash-ionized emission lines within the first several days requires that the dense CSM be confined to within ≲1015 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular type II supernova; thus, the finding that the probable red supergiant progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars. © 2017 Nature Publishing Grou
An exceptionally bright flare from SGR1806-20 and the origins of short-duration gamma-ray bursts
Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous
short-duration (about 0.1 s) bursts of hard X-rays during sporadic active
periods. They are thought to be magnetars: strongly magnetized neutron stars
with emissions powered by the dissipation of magnetic energy. Here we report
the detection of a long (380 s) giant flare from SGR 1806-20, which was much
more luminous than any previous transient event observed in our Galaxy. (In the
first 0.2 s, the flare released as much energy as the Sun radiates in a quarter
of a million years.) Its power can be explained by a catastrophic instability
involving global crust failure and magnetic reconnection on a magnetar, with
possible large-scale untwisting of magnetic field lines outside the star. From
a great distance this event would appear to be a short-duration, hard-spectrum
cosmic gamma-ray burst. At least a significant fraction of the mysterious
short-duration gamma-ray bursts therefore may come from extragalactic
magnetars.Comment: 21 pages, 5 figures. Published in Natur
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniae
Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniaeThe contribution of specific factors to bacterial virulence is generally investigated through creation of genetic "knockouts" that are then compared to wild-type strains or complemented mutants. This paradigm is useful to understand the effect of presence vs. absence of a specific gene product but cannot account for concentration-dependent effects, such as may occur with some bacterial toxins. In order to assess threshold and dose-response effects of virulence factors, robust systems for tunable expression are required. Recent evidence suggests that the folding free energy (?G) of the 5' end of mRNA transcripts can have a significant effect on translation efficiency and overall protein abundance. Here we demonstrate that rational alteration of 5' mRNA folding free energy by introduction of synonymous mutations allows for predictable changes in pneumolysin (PLY) expression by Streptococcus pneumoniae without the need for chemical inducers or heterologous promoters. We created a panel of isogenic S. pneumoniae strains, differing only in synonymous (silent) mutations at the 5' end of the PLY mRNA that are predicted to alter ?G. Such manipulation allows rheostat-like control of PLY production and alters the cytotoxicity of whole S. pneumoniae on primary and immortalized human cells. These studies provide proof-of-principle for further investigation of mRNA ?G manipulation as a tool in studies of bacterial pathogenesis.National Institutes of Health (www.nih.gov) (R01 AI092743 and R21 AI111020 to A.J.R.). F.E.A. was supported by the Portuguese Foundation for Science and Technology (www.fct.pt) SFRH/BD/33901/2009 and the Luso-American Development Foundation (www.flad.pt). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach
Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics
Employing an open-source tool to assess astrocyte tridimensional structure
Astrocytes display important features that allow them to maintain a close dialog with neurons, ultimately impacting brain function. The complex morphological structure of astrocytes is crucial to the role of astrocytes in brain networks. Therefore, assessing morphologic features of astrocytes will help provide insights into their physiological relevance in healthy and pathological conditions. Currently available tools that allow the tridimensional reconstruction of astrocytes present a number of disadvantages, including the need for advanced computational skills and powerful hardware, and are either time-consuming or costly. In this study, we optimized and validated the FIJI-ImageJ, Simple Neurite Tracer (SNT) plugin, an open-source software that aids in the reconstruction of GFAP-stained structure of astrocytes. We describe (1) the loading of confocal microscopy Z-stacks, (2) the selection criteria, (3) the reconstruction process, and (4) the post-reconstruction analysis of morphological features (process length, number, thickness, and arbor complexity). SNT allows the quantification of astrocyte morphometric parameters in a simple, efficient, and semi-automated manner. While SNT is simple to learn, and does not require advanced computational skills, it provides reproducible results, in different brain regions or pathophysiological states.The authors acknowledge funding from national funds through the FCT—Foundation for Science and Technology—project (PTDC/SAU-NSC/118194/2010) to G.T., V.M.S., S.G.G. and J.F.O., and fellowships (SFRH/BD/89714/2012 to V.M.S., SFRH/BPD/97281/2013 to J.F.O., SFRH/BD/101298/2014 to S.G.G., PD/BD/114120/2015 to S.P.N, and PD/BD/127822/2016 to G.T.); Marie Curie Fellowship FP7-PEOPLE-2010-IEF 273936 and BIAL Foundation Grants and 207/14 to J.F.O.; QREN and FEDER funds through Operational program for competitiveness factors—COMPETE, “ON.2 SR&TD Integrated Program—NORTE-07-0124-FEDER-000021”; National and European funds through FCT, and FEDER through COMPETE (PEst-C/SAU/LA0026/2011 and FCOMP-01-0124-FEDER-022724; PEst-C/SAU/LA0026/2013 and FCOMP-01-0124-FEDER-037298, respectively)info:eu-repo/semantics/publishedVersio
Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation
Developing low-cost electrocatalysts to replace precious Ir-based materials is key for oxygen evolution reaction (OER). Here, we report atomically dispersed nickel coordinated with nitrogen and sulfur species in porous carbon nanosheets as an electrocatalyst exhibiting excellent activity and durability for OER with a low overpotential of 1.51 V at 10 mA cm(-2) and a small Tafel slope of 45 mV dec(-1) in alkaline media. Such electrocatalyst represents the best among all reported transition metal- and/or heteroatom-doped carbon electrocatalysts and is even superior to benchmark Ir/C. Theoretical and experimental results demonstrate that the well-dispersed molecular S vertical bar NiNx species act as active sites for catalyzing OER. The atomic structure of S vertical bar NiNx centers in the carbon matrix is clearly disclosed by aberration-corrected scanning transmission electron microscopy and synchrotron radiation X-ray absorption spectroscopy together with computational simulations. An integrated photoanode of nanocarbon on a Fe2O3 nanosheet array enables highly active solar-driven oxygen production
- …
