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Abstract 

 

Analysis of diurnal patterns of surface ozone (O3) at multiple urban sites in the United 

Kingdom (UK) shows the occurrence of prominent nocturnal enhancements during the 

winter months (November - March). Whilst nocturnal surface ozone (NSO) 

enhancement events have been observed at other locations, this is the first time that such 

features have been demonstrated to occur in the UK and the second location globally. 

The observed NSO enhancement events in the UK were found to be so prevalent that 

they are clearly discernible in monthly diurnal cycles averaged over several years of 

data. Long term (2000-2010) analysis of hourly surface ozone data from 18 urban 

background stations shows a bimodal diurnal variation during the winter months with a 

secondary nighttime peak around 0300 hr along with the primary daytime peak. For all 

but one site, the daily maxima NSO concentrations during the winter months exceeded 

60 µg/m3 on >20% of the nights. The highest NSO value recorded was 118 µg/m3. 

During the months of November, December and January, the monthly averaged O3 

concentrations observed at night (0300 hr) even exceeded those observed in the daytime 

(1300 hr). The analysis also shows that these NSO enhancements can last for several 
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hours and were regional in scale, extending across several stations simultaneously. 

Interestingly, the urban sites in the north of the UK exhibited higher NSO than the sites 

in the south of the UK, despite their daily maxima being similar. In part, this seems to 

be related to the sites in the north typically having lower concentrations of nitrogen 

oxides. 

Keywords: nocturnal surface ozone; urban background stations; bimodal diurnal 

variation; United Kingdom 
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1. INTRODUCTION 

 

Ozone is a highly reactive volatile secondary photochemical air pollutant found 

in trace concentrations and is an important greenhouse gas (Mickley et al., 2001) which 

contributes to global warming and climate change (Unger et al., 2006). The precursors 

of ozone are nitrogen oxides (NOX) and non-methane volatile organic compounds 

(NMVOCs), which are short-lived gases; as well as methane (CH4) and carbon 

monoxide (CO), which are long-lived gases. Increase in NOX emissions from pre-

industrial times to the present day explains about 57% of the direct rise in the global 

tropospheric ozone production (Wang and Jacob, 1998). Further, increasing emission of 

CH4, CO, and NMHCs accounts for the remaining 43% of the rise in the global 

tropospheric ozone production through indirectly increasing the ozone production 

efficiency of NOX. It is now well known that NOX, along with volatile organic 

compounds (VOCs), play a crucial role in controlling the distribution and variability of 

tropospheric ozone (Jena et al., 2015). The increase of ozone precursor emissions from 

traffic and industrial activities lead to increased production of surface ozone (O3) over 

polluted regions (Ghude et al., 2008; Kulkarni et al., 2010). The ozone produced near 

the surface can get lifted into the free troposphere where it has a longer lifetime [~22 

days (Stevenson et al., 2006)]) compared to near the surface [~1 day (Royal Society, 

2008)], however lifetime of ozone is highly variable in terms of time of the year and 

location of measurement. This is of great importance since O3 formed over source 

regions can then be transported over large distances affecting areas far from the sources 

(Li et al., 2002; Doherty et al., 2005; Fehsenfeld et al., 2006; Kulkarni et al., 2009; 

Kulkarni et al., 2011). High concentrations of O3 are harmful for humans and plants 
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(Finnan et al., 1997; Ghude et al., 2014). As per the European directive on ambient air 

quality (Directive, 2008) for the protection of human health, the maximum daily eight-

hour mean O3 concentration should not exceed 120 µg/m3 on more than 25 days per 

calendar year averaged over three years and for the protection of vegetation, the value 

of AOT40 (accumulated amount of ozone over the threshold value of 80 µg/m3 

(Directive, 2008)) calculated during May to July should not exceed 18000 µg/m3∙h 

averaged over five years.  

At urban sites, under clear sky conditions O3 concentrations exhibit a marked 

diurnal variation (Zhang et al., 2004) with a maximum during the afternoon and 

minimum from the late evening till early morning (Aneja et al., 2000). The observed 

diurnal pattern of O3 is primarily controlled by changes in the boundary layer height, 

and to some extent by photochemical production during the day and dry deposition, all 

of which are influenced by the geographical location of the measurement site. Typically, 

a shallow and stable nocturnal boundary layer (NBL) is formed during the evening and 

with no sunlight there is no source of O3 production. Furthermore, nitrogen oxide (NO) 

emitted from local urban sources, reacts with O3 producing nitrogen dioxide (NO2) and 

destroying O3. This, combined with efficient loss of O3 through surface deposition, 

results in minimum O3 concentrations during the late evening/early night. Above the 

NBL there is the residual layer (RL), which acts as a reservoir of O3 rich air (Kuang et 

al., 2011) as it is not subject to the same loss processes as the NBL. After sunrise the 

NBL and RL merge to give a well-mixed, deep boundary layer (BL). This, along with 

photochemical production of O3 leads to increasing surface O3 concentrations which 

maximise in the afternoon (Aneja et al., 2000). The diurnal pattern of O3 at suburban 

and rural sites is almost the same, but the differences between daytime and night-time 

concentrations are less pronounced.  
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On calm nights, O3 generally has a positive gradient from the surface to the top of 

the NBL (Stutz, 2000; Geyer and Stutz, 2004). This is due to insufficient downward 

mixing caused by the nocturnal capping of the boundary layer (Kuang et al., 2011) and 

due to the trapping of O3 produced during the daytime in the RL aloft. 

However, sporadic nocturnal surface ozone (NSO) enhancements have been 

observed in different parts of Europe, North and South America, and Asia by various 

researchers (Coulter, 1990; Corsmeier et al., 1997;  Löffler-Mang et al., 1997; Banta et 

al., 1998 ; Kalthoff et al., 2000 ; Jain et al., 2005; Tong et al., 2011). These are 

prominent, well defined phenomena and appear as secondary maxima during the 

nighttime, with NSO concentrations at times exceeding 100 µg/m3. In the absence of 

any known sources of O3 in the NBL and due to the termination of the photochemical 

production of O3 during nighttime, NSO enhancement can likely be attributed to 

meteorological processes (Salmond and McKendry, 2002). Various possible 

atmospheric mechanisms for the NSO enhancement are proposed by various 

researchers, some of which are: mountain-valley wind system and vertical mixing 

(Sanchez et al., 2005), sea-land-breeze (Nair et al., 2002), titration of urban O3 in the 

late afternoon/early evening followed by vertical mixing (Chan et al., 1998, Leung and 

Zhang, 2001), and transport due to downward vertical wind from the residual layer 

(Sanchez et al., 2007). 

At Essen, Germany, Reitebuch et al., (2000) noted an increased NSO 

concentration ranging from 26 up to 182 µg/m3 during 29 individual summer 

measurement campaigns between May 1995 and September 1997. Salmond and 

McKendry (2002) analyzed O3 data obtained from multiple surface monitoring sites 

during a field campaign conducted during the summer 1998 in the Lower Fraser Valley 

(LFV), British Columbia Canada, to study the spatial extent of the NSO enhancement. 
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They observed 57 nocturnal spikes in O3 concentration at different stations within the 

LFV with NSO concentration as high as 93 µg/m3. In Jerusalem, Asaf et al., (2009) 

observed 21 events of NSO concentrations during July 2005 – Sep. 2007 with 

maximum concentration of 120 µg/m3 in July 2007. One of the various reasons for NSO 

enhancement is reported as horizontal advection and land breeze circulation. Sousa et 

al., (2011) studied the effect of horizontal transport on the NSO enhancement and 

reported the influence of land breeze on NSO at 4 different costal sites in the North of 

Portugal during 2005-07.  

WRF-Chem Model studies have also been performed by Wang et al., (2007) over 

The Pearl River Delta (PRD) and the Yangtze River Delta (YRD) in China, Hu et al., 

(2012) over Maryland, US and Klein et al., (2014) over Oklahoma metropolitan area, 

US to understand the atmospheric mechanisms responsible for the NSO enhancement. 

Wang et al., (2007) concluded that urbanization and related temperature, wind speed 

and the planetary boundary layer (PBL) mixing-layer depth and stability changes as the 

causes for the NSO enhancement whereas, Hu et al., (2012) and Klein et al., (2014) 

reported the role of low level jets on vertical mixing and downward transport of O3 as 

the responsible factor. Depending on the geographical location, boundary layer 

dynamics, topography, type of environment (urban, suburban and rural) and climatic 

features, or a combination of the aforementioned atmospheric mechanisms and transport 

processes can contribute to NSO enhancements.  

Musselman and Massman (1999) reported that an increased level of NSO plays an 

important role in determining the negative response of vegetation to O3. In the majority 

of the plant species incomplete stomatal closure is observed during nighttime, leading to 

high leaf conductance (Caird et al., 2007), exposing plants to nighttime air pollution 

(Segschneider et al., 1995; Musselman and Minnick, 2000; Takahashi et al., 2005). 
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During high O3 concentrations, stomatal responsiveness may be reduced (Keller and 

Hasler, 1984; Skarby et al., 1987) resulting in water loss and whole-plant production 

(Matyssek et al., 1995).  

NSO enhancements are thought to be isolated, unusual events which are 

considered to be highly variable in time and space (Löffler-Mang et al., 1997) and, as 

such are not expected to be discernible in data averaged over several days (Salmond and 

McKendry, 2002). However, this study for the first time demonstrates the frequent 

occurrences of NSO in the United Kingdom (hereafter UK) and second time globally 

[first being Portugal (Kulkarni et al., 2013)] during the study period. The NSO 

enhancement events occur sufficiently frequently at urban background sites in the UK 

that they are clearly discernible in monthly diurnal cycles averaged over several years of 

data.  RoTAP (2012) has already analyzed long term hourly surface ozone data for 11 

rural sites in the UK irrespective of day and night. In the current study, surface ozone 

data from across 18 urban background sites in the UK are analyzed and found to exhibit 

enhanced NSO concentrations during winter months (Nov-Mar) over the period 2000-

2010. 

 

2. STUDY AREA AND DATA 

 

The UK is an island nation located in Western Europe. The UK has a total area 

of 243,610 sq. km and lies between latitudes 49° to 61°N and longitudes 9°W to 2°E. 

The UK has a coastline 17,820 km long and is surrounded by the North Atlantic Ocean 

and Irish Sea to the west, with the North Sea in the east, and the English Channel in the 

south. The UK has a temperate climate and receives rainfall almost all around the year. 
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The UK predominantly experiences south westerly air flow, often in low pressure 

systems, coming across the Atlantic. The spatial and temporal patterns of O3 

distribution in the UK are reported in detail by the Royal Society (2008) and Air Quality 

Expert Group - Ozone in the United Kingdom (AQEG-OUK) (2009). As stated in the 

Royal Society (2008) and AQEG-OUK (2009) reports, the O3 trends in the UK are 

basically a combined function of (a) the global scale increase in hemispheric 

background ozone, (b) regional and local scale photochemical production from ozone 

precursors emitted across Europe and (c) reduced removal of O3 by freshly emitted NO, 

particularly in urban areas, as a result of reduced NOX emissions due to the strict 

policies adopted by the UK for emission control. The peak O3 concentrations occur 

under warm and sunny conditions. In the UK, peak O3 concentrations are observed from 

April to September, and show an overall decreasing trend (Jenkin 2008; Fowler et al., 

2008) and in fact have reduced by approximately 60 µg/m3 in the last 20-30 years due to 

the reduction in ozone precursors (NOX and VOCs) in the UK and Europe (RoTAP, 

2012). However, the annual mean O3 concentrations show an increasing trend over the 

last 20 years: at urban sites this is due to the reduction in local sources of NO resulting 

in reduced titration of O3; in rural areas this is due to the increase in the concentration of 

hemispheric background O3 (APEG 2009), which is about 8 µg/m3 (RoTAP, 2012). The 

increase in the background concentration of ozone is the result of increased shipping, 

aircraft, vehicle and industrial emissions in developing economies (Ghude et al., 2008). 

As per the AQEG-OUK report (2009), of the 18 urban sites used in this study, 14 sites 

show a positive trend in the annual mean O3 concentration (8 statistically significant), 

one site shows no trend, one a negative trend (not statistically significant) and trends are 

not available for 2 sites. 
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Hourly records of O3 and daily mean surface NOX (hereafter ‘daily mean surface 

NOX’ as NOX) concentrations are obtained from the 18 air quality monitoring stations 

representing the urban background environment (defined by EU (Directive 2008/50/EC) 

and classified by the Department for Environment Food & Rural Affairs (Defra) 

{http://uk-air.defra.gov.uk/networks/site-types}). Only stations with >85% data 

coverage during the period 2000-2010 are used in this study. The monitoring stations 

are reasonably well spread all over the UK as shown in Figure 1 (and identified in Table 

1), although 4 stations (LT, LHi, LNK and LB) are clustered in London, the biggest 

metropolitan area in the UK and 2 stations (Th and SoS) are close to London. The 

northern most monitoring station used in this study is located at 55º N and southern 

most is located at 50.9º N. All of these stations are part of the UK-AIR (UK - Air 

Information Resource), Defra air quality network. The detailed list of stations with 

information such as name of the stations, latitude-longitude-altitude co-ordinates and 

percentage of data availability are outlined in Table 1. In this study, as per the EU air 

quality reporting procedures, the unit of the O3 concentration used is µg/m3. In order to 

facilitate the data analysis and interpretation, the study area (part of the UK shown in 

Figure 1, covering 50º N to 55º N), is be broadly categorized into two regions, (I) North 

of UK (NoUK) including all the stations north of 52º N latitude and (II) South of UK 

(SoUK): including all the stations south of 52º N latitude. Following the categorization 

of the UK in two regions, 10 of the 18 monitoring stations are located in the NoUK and 

the remaining 8 in the SoUK. The topography of the northern region tends to be more 

hilly/mountainous than the south, which is generally quite flat.  The climate of the 

south, particularly the south east is influenced more by the continent, where as the north 

typically has a more maritime climate. The sites in the south tend to be in more densely 

populated urban regions, although there are some exceptions (See Table S1 in 
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Supplementary Material). The urban background NOX concentration in the SoUK 

(average of 7 urban NOX monitoring stations collocated with ozone monitoring) is 

higher than NoUK (average of 9 urban NOX monitoring stations collocated with ozone 

monitoring) (See Figures S1, S2 and S3 in Supplementary Material). Similarly, the 

monitoring stations used in the study are also categorized into two groups, (I) High 

Surface NOX Stations (HSNS): Stations with decadal mean NOX concentration > 60 

µg/m3 and (II) Low Surface NOX Stations (LSNS): Stations with decadal mean NOX 

concentration < 60 µg/m3. Following the categorization of the monitoring stations used 

in the study in two groups, 7 of the 16 monitoring stations are HSNS (4 stations in 

NoUK and 3 in SoUK) and the remaining 9 are LSNS (2 stations in NoUK and 7 in 

SoUK). Decadal mean NOX concentrations for each station are given in Table 1. The 

analysis of NSO based on the categorization of the monitoring stations in two groups 

considered 16 stations instead of 18 stations, since at 2 stations (LNK and De) NOX 

monitoring only started in 2010. 

 

3. RESULT AND DISCUSSION 

 

3.1 Annual diurnal variation of surface ozone: 

The monthly average diurnal variations (MADV) of O3 concentration averaged over 

the 18 urban background stations for the period 2000-2010 are depicted in Figure 2. It 

reflects the overall seasonal variation of O3 concentration in the UK, which exhibits a 

spring maximum and an autumn minimum at all the UK urban background sites 

(Jenkin, 2008). During the summer months the diurnal cycles exhibits daytime maxima 

and night-time minima, with a slight “shoulder” close to midnight in the decline from 
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the maxima to the minima. During the autumn this “shoulder” develops into a peak, 

such that by the winter there is a clear bimodal structure with a night-time maxima that 

even exceeds the daytime maxima. The highest concentration of daily maximum NSO 

during the study period was observed at Stoke-on-Trent Centre (118 µg/m3).  In the 

transition from spring to summer the night-time maxima diminishes. Kulkarni et al., 

(2013) observed similar seasonal variations in annual diurnal variation of MADV of O3 

concentration in Portugal with prominent night-time maxima during winter months, but 

never exceeded the daytime maxima. Similarly, Chung (1977) observed bimodal a 

structure in the MADV of O3 concentration at Toronto (~120µg/m3) and Montreal (~55 

µg/m3), Canada during summer 1973-1975, Leung and Zhang (2001) and Wang et al., 

(2001) at Hong Kong (~68 µg/m3), China during November - December 1996-1997, 

Saliba et al., (2006) at Beirut (~50 µg/m3), Lebanon during November 2004 – February 

2005, and Asaf et al., (2010) at Jerusalem (~65 µg/m3) during winter 2005 - 2007. The 

detailed analysis of the winter-time bimodal structure of O3 concentration is presented 

in the following sub-section (3.2). 

Over the UK the highest daytime maximum is observed during April and May 

with the monthly average (MA) daytime maximum O3 concentration of 69±10 µg/m3 in 

May. Similarly, the lowest MA daytime maximum is observed in December (28±7 

µg/m3). Further Figure 3 shows the annual variation of MA O3 concentrations for 

specific hours i.e. 0300 hr, 0800 hr, 1300 hr and 1800 hr, averaged across all sites in the 

UK. It shows that during the winter the MA at 0300 hr are much higher than at 1800 hr 

and at 0800 hr. Moreover, the O3 concentrations at 0300 hr even exceed those at 1300 hr 

during the months of November, December and January.  

3.2 Bimodal Diurnal variation of O3 during winter months: 
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As briefly mentioned in the previous sub-section (3.1), a bimodal structure is 

exhibited in the MADV of O3 concentration during winter, with a daytime maxima 

during typically around 1300 hr and night-time maxima typically around 0300 hr. The 

nocturnal peak is particular prominent during November to January when the nocturnal 

maxima exhibit higher concentrations than the daytime maxima. The highest nocturnal 

maximum in the MADV occurs in March (46±7µg/m3). Globally there are very few 

studies focused on NSO enhancement and almost no studies on a decadal time scale 

except the one by Kulkarni et al., 2013. Kulkarni et al., (2013) analyzed winter time 

NSO enhancement on a decadal time scale at three urban background sites in Portugal 

similar to the urban background sites in the UK, the highest nocturnal maximum in the 

MADV of O3 concentration is observed in March with almost the same concentrations 

(~49µg/m3). The appearance of a bimodal structure in the O3 diurnal cycle when 

averaged over a month and over several stations (in this case 18 urban background 

monitoring stations) is only possible if the frequency and magnitude of the enhanced 

NSO are high and observed at almost all the stations.   

To further understand the bimodal diurnal variation of O3 during winter months, 

detailed analyses were performed based on (1) Regional division of monitoring stations 

in UK (NoUK vs. SoUK) and (2) Division of monitoring stations depending on NOX 

concentration in UK (HSNS vs. LSNS) as described in the section ‘2. Study area and 

data’. In Figure 4 the MADV of surface ozone concentrations for NoUK and SoUK 

regions are depicted (Figure S4 and S5 [in Supplementary Material] shows MADV of 

surface ozone concentration for each site in SoUK and NoUK respectively). 

Interestingly, in the regional division, the nighttime maxima differ significantly between 

the two regions with the NoUK average NSO being higher for each month compared to 

SoUK, despite the day-time maxima being very similar for both regions (mean and 
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standard deviations). This pattern is the same for all the winter months. As it can be 

seen in Figure 4, the differences between the two regions in the nighttime peak 

concentrations are of the order of 9 µg/m3 in January and November, 7 µg/m3 in 

February and December and of 10 µg/m3 in March. From November through to January 

the night-time maxima exceed the daytime maxima for the NoUK region, but this only 

occurs in December and January for the SoUK. 

Similarly, in Figure 5 the MADV of surface ozone concentration for HSNS and 

LSNS groups is depicted. As it can be seen in figure 5, the MADV of O3 concentrations 

in the HSNS are lower than LSNS throughout day and night. On close comparison 

between figures 4 and 5, the monthly averaged daytime O3 peak concentrations in both 

NoUK and SoUK regions are closer to LSNS daytime peak concentrations, whereas the 

monthly averaged nighttime O3 peak concentrations in NoUK gets closer to LSNS 

nighttime O3 peak concentrations and SoUK gets closer to HSNS nighttime O3 peak 

concentrations in all the winter months. This is due to higher concentration of NOX in 

SoUK favoring higher rate of O3 titration compared to NoUK, particularly during the 

night. 

The detailed spatial distribution of monitoring stations within regions and groups 

shows that, out of 8 monitoring sites in the SoUK, 4 sites (LT, LHi, LNK and LB) are in 

the London metropolitan area, with a population of more than 8 million, high vehicular 

density and anthropogenic activity leading to high urban background NOX concentration 

(particularly LHi and LB [decadal mean NOX concentration greater than 100 µg/m3] see 

Figure S2 in Supplementary Material). The remaining 4 sites in SoUK, each with 

population less than 400 thousand have lower urban background NOX concentration 

(decadal mean NOX concentration of ~55 µg/m3). In the NoUK region, 2 out of 10 

stations (LC and MP) are in major urban centres (with population ≥ 500 thousand) and 
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have high urban background NOX concentration (decadal mean NOX concentration of 

~75 µg/m3). The remaining 8 sites in NoUK, each with population  less than 400 

thousand have lower urban background NOX concentration (decadal mean NOX 

concentration of ~49 µg/m3) (see Figure S3 in Supplementary Material). In general, 

urban background sites in SoUK have higher NOX concentrations than urban 

background sites in NoUK. This along with other reasons, such as topography, 

meteorological conditions and the site specific local chemistry, may explain the 

observed differences in the nighttime maxima of NSO concentration. However these 

findings are still unclear and warrant further investigation.  

3.3 Frequency distribution analysis for the winter months: 

The frequency distribution of daily maximum values of NSO observed between 

2100 hr and 0500 hr at 18 urban background sites in the UK during the winter months 

for the period 2000-2010 are shown in Figure 6. The frequency distribution shows that 

on more than 50% of the days the daily maximum NSO concentrations were above 40 

µgm-3, except at London Bloomsbury and London Hillingdon; and for more than 20% 

of the days these were above 60 µgm-3, except at London Bloomsbury. For almost all 

sites, the frequency distributions indicate that on more than 20% of the days the NSO 

concentrations exceeded the Avg- MA daytime maximum O3 concentration for all sites 

observed for the month of March (57 µgm-3), except at London Bloomsbury and 

Manchester Piccadilly which only exceeded this on more than 11% and 19% of the days 

respectively. 

Each of the 18 urban background sites exceeded the daily maximum NSO 

concentrations of 80 µgm-3 from 0.2% up to 21% of the days of observation used in this 

analysis (Figure 6). At Derry, the most north-western site, the daily maximum NSO 
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concentrations exceeded 80 µgm-3 on the most number of days (21%). As the UK 

predominantly experiences south westerly air flow from the Atlantic and Derry is the 

most western site, it is not expected to be affected greatly by regional UK or continental 

ozone. Also Derry is a small city with a low population and limited industrial and traffic 

activities which leads to relatively low NOX environment (Annual mean NOX 

concentration for the year 2010 was ~31 µg/m3). Therefore the frequent high daily 

maximum NSO concentrations observed at Derry are likely to be due to the greater 

influence of background tropospheric ozone than at other sites in this study. 

Furthermore, at only one (London Teddington) out of 8 sites in the SoUK, did the daily 

maximum NSO concentration exceeded 80 µgm-3 on more than 11% of the days, 

whereas at 6 out of 10 sites in the NoUK, the daily maximum NSO concentration 

exceeded 80 µgm-3 on more than 12% of the days. 

AQEG-OUK (2009) in its report observed between the years 1991 and 1998 a 

marked shift in the frequency of occurrence of lower values of hourly O3 concentration 

to higher values of hourly O3 concentration at an urban background site in central 

London. The report concluded that the observed changes were due to the reduction in 

the NOX emission resulting in a decreased titration of O3 and an increase in the 

background ozone, particularly during winter.   

Kulkarni et al., (2013) analyzed long term (2000-2010) hourly O3 data for the Porto 

and Lisbon regions in Portugal and reported that NSO concentration exceeded 40 

µg/m3, 60 µg/m3 and 80 µg/m3 respectively on more than 50%, 20% and 2% of winter 

days. Of the 9 sites analyzed by Kulkarni et al., (2013) only 3 are urban background 

sites, with Alfragide having the highest frequency of NSO occurrences (i.e. 

concentrations exceeded 80 µg/m3 during 13% of winter nights). During the same study 

period (2000-2010), many stations in UK (BG, NeC, BC) observed much higher 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 

 

frequencies of NSO events exceeding 80 µg/m3, with the highest frequency being 21% 

observed at Derry.  Sousa et al., (2011) studied the frequency of occurrence of NSO at 4 

different sites (2 urban traffic sites and 2 rural background sites) in Portugal during 

2005-07 and observed around 40% to 50% of the days with NSO enhancement with an 

average concentration of 52±19 µg/m3. Eliasson et al., (2003) observed high values of 

NSO concentration at Göteborg, Sweden and reported the occurrence of NSO 

enhancement (>80 µgm-3) on 33% of the nights during the May-August period. 

3.4 Temporal extent of the high NSO enhancements: 

For this analysis an NSO concentration of 80 µgm-3 is considered as a threshold 

and values higher than the threshold are termed as high concentrations of NSO (HNSO) 

(RoTAP, 2012). The hourly NSO concentration values observed from 2100 to 0500 hr 

on the nights when the maximum NSO concentration was observed at each station are 

given in Table 2. It also gives the number of hours of HNSO that were observed at each 

station. The temporal coverage was broadly categorized as a short-term, medium-term 

or long-term event. If the HNSO were observed for less than 3 hours it is labeled as a 

short-term event; between 3 to 6 hours it is labeled as a medium-term and more than 6 

hours the HNSO is labeled as long-term. The analysis shows that out of 18 sites, the 

observed HNSO was short-term at 4 sites, medium-term at 5 sites and long-term at 9 

sites (Table 2).  

3.5 Spatial extent of the high NSO enhancements: 

Table 3 contains the maximum NSO concentration values observed at all 

stations during the nights of the maximum NSO occurrences presented in Table 2. This 

overview of the NSO dataset allows for the evaluation of the spatial coverage of the 
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HNSO events, considering the number of stations with HNSO values during the same 

night. The spatial coverage was broadly divided into three categories: (a) local, (b) 

regional and (c) national.  

(a) Local coverage: If the HNSO values were observed at less than 6 sites; 

(b) Regional coverage: If the HNSO values were observed from 6 up to 12 sites; 

(c) National coverage: If the HNSO values were observed at more than 12 sites.  

This analysis was performed using NSO measurements made on 15 nights (instead 

of 18 nights) as there are 3 nights, specifically the 6th of March 2005, 31st March 2007 

and 21st March 2008, on which 2 stations each observed their highest NSO events 

(Table 3) on the same night. The analysis showed that, on 2 nights out of 15, the 

observed NSO enhancement was local, on 9 nights it was regional and on 7 nights it 

was found to be national.  

On 21st March 2008, high values of O3 concentrations are observed at almost all the 

stations during an NSO enhancement event in the UK. Two stations (Pr and LC) 

experienced maximum NSO concentration of 108 µg/m3 and 112 µg/m3 respectively 

and remained high throughout the night (2100 hr to 0500 hr) (Table 3). On the same 

night, 13 out of 17 sites (data is not available for one site ‘BC’) observed NSO 

concentration > 80 µg/m3 and the remaining 4 sites observed NSO concentration > 70 

µg/m3 (Table 3). The NSO enhancements observed at each urban site in the UK are, on 

average, comparable with NSO enhancements observed at other urban sites in Europe. 

At Göteborg, Sweden, Eliasson et al., (2003) observed high values of NSO 

concentration, with a maximum NSO concentration of 104 µg/m3 during the summer 

(May – August) 1994. In Essen, Germany, Strassburger and Kuttler (1998) and 

Reitebuch et al., (2000) observed high values of NSO concentration during the summer 

period of 1995-96 and 1995-1997 respectively. The maximum NSO concentration of 
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74±14 µg/m3 was observed by Strassburger and Kuttler (1998), whereas, Reitebuch et 

al., (2000) observed a maximum NSO concentration of 91 µg/m3. At Segovia, Spain, 

Sanchez et al., (2005) observed an increase of more than 30 µg/m3 (from 70 to > 100 

µg/m3) from late evening till early morning in June 2004. However, this is the first 

study of NSO, covering a vast spatial area across the UK (18 stations spread across the 

UK) exhibiting high NSO concentration values. 

 

4. CONCLUSION: 

 

In this work the long term (2000-2010) diurnal variation of O3 concentration was 

analyzed with particular emphasis on the NSO enhancement. The analysis reveals that 

prominent nocturnal peaks appear regularly in urban centers in the UK during winter 

months. During the study period monthly averaged diurnal variations of O3 

concentration show a well pronounced bimodal distribution with a daytime peak and a 

nighttime peak. For the months November through to January, the average nighttime 

peaks actually exceeded the average daytime peaks. Further data analysis highlighted 

that the NSO enhancement, during the winter season, is more prominent at northern UK 

sites (42±5µg/m3) than at southern UK sites (35±4µg/m3). Similarly, the NSO 

enhancement is less prominent at the sites with the high NOX concentration than at the 

sites with the low NOX concentration. Frequency distribution analysis of daily 

maximum NSO concentrations for the winter period shows >20% of the daily maximum 

NSO concentrations are above 60 µg/m3  and depending on the site, between 0.2% and 

21% of the days have maximum NSO concentration greater than 80 µg/m3. The analysis 

of temporal and spatial coverage of high NSO events shows that the NSO enhancements 

over UK often last for several hours and extend to the regional scale. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 

 

Significant research is done on daytime photochemistry and O3 air quality. 

Comparatively less attention is paid to the investigation of nighttime atmospheric 

chemistry, particularly nighttime enhancement of O3. Since O3 production ceases at 

nighttime, a plausible reasoning for observed bimodal pattern of O3 with enhanced NSO 

concentration during nighttime has to be governed by complex combination of 

atmospheric transport processes, topography and corresponding meteorological 

conditions. To fully understand the mechanism of enhancement of NSO at any location, 

its spatiotemporal extent and severity; in-depth analysis of various meteorological 

parameters (for example NBL, wind speed and direction, Bulk Richardson Number 

(BRN), potential temperature, etc.,) is essential. The multiple NSO enhancement events 

may occur over the same geographical location, as demonstrated in this study, but under 

entirely different atmospheric mechanisms (such as horizontal advection, vertical 

downdraft and mixing, passing of low level jets, etc.,) and warrants further 

investigation.  
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Table 1. Main features of the selected O3 and NOX urban background monitoring 

stations over the UK.  

Code Site name# 

(NoUK/SoUK)$ 
UK-AIR ID Lat Long Alt. 

(m) 

A A 

(%) 

B 

(µgm-3) 

 NoUK sites         

SC Southampton Centre UKA00235 50.908 -1.395 7 3695 91.9  68.9 

LT London Teddington UKA00267 51.420 -0.339 29 3722 92.6  40.9 

Th Thurrock UKA00272 51.477 0.317 8 3744 93.1  61.9 

CC Cardiff Centre UKA00217 51.481 -3.176 12 3673 91.4  52 

LHi London Hillingdon UKA00266 51.496 -0.460 34 3738 93.0  115.9 

LNK London N. Kensington UKA00253 51.521 -0.213 5 3512 87.4  58.6* 

LB London Bloomsbury UKA00211 51.522 -0.125 20 3553 88.4  103.3 

SoS Southend-on-Sea UKA00409 51.544 0.678 37 3482 86.6  35.7 

 SoUK sites         

LS Leamington Spa UKA00265 52.288 -1.533 175 3691 91.8  41.9 

NC Nottingham Centre UKA00274 52.954 -1.146 41 3876 96.4  65 

STC Stoke-on-Trent Centre UKA00337 53.028 -2.175 172 3757 93.5  58.5 

MP Manchester Piccadilly UKA00248 53.481 -2.237 45 3673 91.4  86.5  

BG Barnsley Gawber UKA00353 53.562 -1.510 100 3735 92.9  37.3 

Pr Preston UKA00408 53.765 -2.680 40 3625 90.2  43.8 

LC Leeds Centre  UKA00222 53.803 -1.546 78 3770 93.8  70.8 

BC Belfast Centre UKA00212 54.599 -5.928 10 3685 91.7  58.4 

NeC Newcastle Centre UKA00213 54.978 -1.610 45 3790 94.3  55.7 

De Derry UKA00343 55.001 -7.329 32 3701 92.1  31.8* 

# - urban background sites 

$ - NoUK : North of UK ; SoUK : South of UK 

A - No. of days of surface ozone observation used (Only days with ≥75% [≥1800 h] of 

data used for diurnal variation study). 

B – Decadal mean surface NOX concentration (Values in bold represents sites with High 

Surface NOX Stations (HSNS) with decadal mean NOX concentration > 60 µg/m3 

and values in italics represents sites with Low Surface NOX Stations (LSNS) with 

decadal mean NOX concentration < 60 µg/m3) 

* - Annual mean surface NOX concentration for the year 2010 instead of decadal mean 
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Table 2. Hourly NSO concentration observed at each station on the night when the 

maximum NSO concentration was observed during the study period 2000-2010 with 

number of hours exceeding 80 µg/m3/h. 
 

Station 
code 

Max. 
NSO 

Date 
(After 

midnight) 

NSO concentration (at specific time of the night) A 

2100 2200 2300 0000 0100 0200 0300 0400 0500 

SC 92 6-Mar-05 44 42 46 64 76 90 88 90 92 4 

LT 108 6-Mar-05 42 74 90 104 100 106 108 102 102 7 

Th 108 31-Mar-07 108 106 100 96 94 94 94 88 84 9 

CC 100 26-Feb-02 72 62 48 64 72 74 68 100 100 2 

LHi 114 31-Mar-07 110 110 114 112 112 112 108 106 102 9 

LK 100 10-Feb-00 36 54 54 64 82 90 98 100 98 5 

LB 82 12-Mar-08 56 60 64 64 64 82 80 80 78 1 

SoS 110 11-Mar-06 70 60 56 70 86 88 96 108 110 5 

LS 100 30-Mar-08 88 90 90 90 94 98 100 90 80 8 

NC 100 2-Mar-08 64 54 50 56 54 72 80 90 100 2 

STC 118 8-Nov-01 38 46 56 62 86 86 94 114 118 5 

MP 114 22-Feb-08 4 20 114 56 44 22 24 34 48 1 

BG 112 3-Mar-00 78 78 76 76 78 104 112 104 98 4 

Pr 108 21-Mar-08 92 96 98 102 106 108 102 98 100 9 

LC 112 21-Mar-08 104 108 110 110 110 108 112 106 102 9 

BC 106 24-Mar-00 48 78 92 98 106 104 106 104 104 7 

NeC 110 17-Mar-06 86 88 94 96 104 106 108 110 108 9 

De 112 7-Mar-02 96 98 100 104 100 110 112 110 108 9 

A- No. of hours with NSO ≥80 µg/m3 
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Table 3. Daily maximum NSO concentration observed at all the station used in this study 

on the night when the maximum NSO concentration was observed at the specific station 

during the study period 2000-2010 with number of stations exceeding NSO 

concentration of 80 µg/m3. 
 

 

Station 

code (A) 

Max. 

NSO 

at 

(A) 

Date Maximum NSO concentration (at specific station) B 

 
SC LT Th CC LHi LK LB SoS LS NC STC MP BG Pr LC BC NeC De 

SC 92 6-M-05 92 108 100 68 86 86 70 88 78 72 68 50 70 46  52 44 48 6 

LT 108 6-M-05 92 108 100 68 86 86 70 88 78 72 68 50 70 46  52 44 48 6 

Th 108 31-M-07 86 106 108 86 114  64 100 96 82 92 52 76 82 86 92 92 76 13 

CC 100 26-F-02 76 82 80 100 66 68   84 68 82 78 96 78 54 70 76 94 6 

LHi 114 31-M-07 86 106 108 86 114  64 100 96 82 92 52 76 82 86 92 92 76 13 

LK 100 10-F-00 76 80 78 82 68 100 64  84 76 72 68 86  80 90 80 94 6 

LB 82 12-M-08 74 92  94 94 88 82 88 90 94 68 80 80 98 104  84 102 14 

SoS 110 11-M-06 70 70 92 54 64 82 70 110 80 74 74  84 70 86 78 92 90 7 

LS 100 30-M-08 86 96 90 86 90 94 76 100 100 96  74 90 92 100 100 76 94 14 

NC 100 2-M-08 66 76 70 82 80 74 66 68 84 100 96 92 94 94 90  98 90 10 

STC 118 8-N-01 60 64 58 74 66 76 56 58 66 78 118 62 70 82 66 90 72 78 3 

MP 114 22-F-08 56 68 58 72 60 62 58 62 68 70 70 114 82 80 90 94 94 92 6 

BG 112 3-M-00 74 72 68 74 56 68 60  92 86 50 44 112  94 84 92 94 7 

Pr 108 21-M-08 78 90 78 94 100 86 72 96 94 96 70 98 96 108 112  86 104 13 

LC 112 21-M-08 78 90 78 94 100 86 72 96 94 96 70 98 96 108 112  86 104 13 

BC 106 24-M-00 36 56 56 72 10 30 26  60 42 72 22 66  20 106 86 88 3 

NeC 110 17-M-06 78 88 82 94 80 80 72 96 98 86 90  80 104 92 86 110 90 13 

De 112 7-M-02 64 76 72 78 54 66 54 64 80 88 82 76 106 86 88 104 100 112 8 

B- No. of stations with NSO ≥80 µg/m3 
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FIGURE CAPTIONS: 

Figure 1. Map of the UK showing the 18 locations of the urban background monitoring 

stations considered in the present analysis (Table 1). The inset shows 5 background 

monitoring stations in the metropolitan city – London.  

Figure 2. Average of the monthly averaged diurnal variation of ozone for the period 

2000-2010 from 18 urban background monitoring stations from January to December. 

Each 24 hour period represents the monthly averaged diurnal variation for the respective 

month labeled J (Jan) to D (Dec). Vertical bars are 2σ standard deviation for the spatial 

variability of 18 sites. The red arrows indicate the NSO enhancement in the respective 

months. 

Figure 3. Annual variation of the average of the monthly averaged ozone for the period 

2000-2010 from 18 urban background monitoring stations at (a) 0300 hr [black], (b) 

0800 hr [red], (c) 1300 hr [blue] and (d) 1800 hr [green].  

Figure 4. Average of the monthly averaged diurnal variations of ozone for 8 (black) and 

10 (red) urban background monitoring stations from the south and north of the UK for 

the winter months (Nov to Mar) during the period 2000-2010. Vertical bars are 2σ 

standard deviation for the 18 sites. 

Figure 5. Average of the monthly averaged diurnal variations of ozone for urban 

background monitoring stations with decadal mean urban background surface NOX 

concentration > 60 µgm-3 [7 stations (black)] and < 60 µgm-3 [9 stations (red)] for the 

winter months (Nov to Mar) during the period 2000-2010. Vertical bars are 2σ standard 

deviation for the 16 sites. 

Figure 6. The frequency distribution (%) of daily maximum NSO concentration at each 

station with respect to the total number of days of observations used (number specified 
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on top of each set of bar graph for each station) for winter period during the study 

period 2000-2010. 
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Table 1. Main features of the selected O3 and NOX urban background monitoring 

stations over the UK.  

Code Site name# 

(NoUK/SoUK)$ 
UK-AIR ID Lat Long Alt. 

(m) 

A A 

(%) 

B 

(µgm-3) 

 NoUK sites         

SC Southampton Centre UKA00235 50.908 -1.395 7 3695 91.9  68.9 

LT London Teddington UKA00267 51.420 -0.339 29 3722 92.6  40.9 

Th Thurrock UKA00272 51.477 0.317 8 3744 93.1  61.9 

CC Cardiff Centre UKA00217 51.481 -3.176 12 3673 91.4  52 

LHi London Hillingdon UKA00266 51.496 -0.460 34 3738 93.0  115.9 

LNK London N. Kensington UKA00253 51.521 -0.213 5 3512 87.4  58.6* 

LB London Bloomsbury UKA00211 51.522 -0.125 20 3553 88.4  103.3 

SoS Southend-on-Sea UKA00409 51.544 0.678 37 3482 86.6  35.7 

 SoUK sites         

LS Leamington Spa UKA00265 52.288 -1.533 175 3691 91.8  41.9 

NC Nottingham Centre UKA00274 52.954 -1.146 41 3876 96.4  65 

STC Stoke-on-Trent Centre UKA00337 53.028 -2.175 172 3757 93.5  58.5 

MP Manchester Piccadilly UKA00248 53.481 -2.237 45 3673 91.4  86.5  

BG Barnsley Gawber UKA00353 53.562 -1.510 100 3735 92.9  37.3 

Pr Preston UKA00408 53.765 -2.680 40 3625 90.2  43.8 

LC Leeds Centre  UKA00222 53.803 -1.546 78 3770 93.8  70.8 

BC Belfast Centre UKA00212 54.599 -5.928 10 3685 91.7  58.4 

NeC Newcastle Centre UKA00213 54.978 -1.610 45 3790 94.3  55.7 

De Derry UKA00343 55.001 -7.329 32 3701 92.1  31.8* 

# - urban background sites 

$ - NoUK : North of UK ; SoUK : South of UK 

A - No. of days of surface ozone observation used (Only days with ≥75% [≥1800 h] of 

data used for diurnal variation study). 

B – Decadal mean surface NOX concentration (Values in bold represents sites with High 

Surface NOX Stations (HSNS) with decadal mean NOX concentration > 60 µg/m3 

and values in italics represents sites with Low Surface NOX Stations (LSNS) with 

decadal mean NOX concentration < 60 µg/m3) 

* - Annual mean surface NOX concentration for the year 2010 instead of decadal mean 
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Table 2. Hourly NSO concentration observed at each station on the night when the 

maximum NSO concentration was observed during the study period 2000-2010 with 

number of hours exceeding 80 µg/m3/h. 
 

Station 
code 

Max. 
NSO 

Date 
(After 

midnight) 

NSO concentration (at specific time of the night) A 

2100 2200 2300 0000 0100 0200 0300 0400 0500 

SC 92 6-Mar-05 44 42 46 64 76 90 88 90 92 4 

LT 108 6-Mar-05 42 74 90 104 100 106 108 102 102 7 

Th 108 31-Mar-07 108 106 100 96 94 94 94 88 84 9 

CC 100 26-Feb-02 72 62 48 64 72 74 68 100 100 2 

LHi 114 31-Mar-07 110 110 114 112 112 112 108 106 102 9 

LK 100 10-Feb-00 36 54 54 64 82 90 98 100 98 5 

LB 82 12-Mar-08 56 60 64 64 64 82 80 80 78 1 

SoS 110 11-Mar-06 70 60 56 70 86 88 96 108 110 5 

LS 100 30-Mar-08 88 90 90 90 94 98 100 90 80 8 

NC 100 2-Mar-08 64 54 50 56 54 72 80 90 100 2 

STC 118 8-Nov-01 38 46 56 62 86 86 94 114 118 5 

MP 114 22-Feb-08 4 20 114 56 44 22 24 34 48 1 

BG 112 3-Mar-00 78 78 76 76 78 104 112 104 98 4 

Pr 108 21-Mar-08 92 96 98 102 106 108 102 98 100 9 

LC 112 21-Mar-08 104 108 110 110 110 108 112 106 102 9 

BC 106 24-Mar-00 48 78 92 98 106 104 106 104 104 7 

NeC 110 17-Mar-06 86 88 94 96 104 106 108 110 108 9 

De 112 7-Mar-02 96 98 100 104 100 110 112 110 108 9 

A- No. of hours with NSO ≥80 µg/m3 
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Table 3. Daily maximum NSO concentration observed at all the station used in this study 

on the night when the maximum NSO concentration was observed at the specific station 

during the study period 2000-2010 with number of stations exceeding NSO 

concentration of 80 µg/m3. 
 

 

Station 

code (A) 

Max. 

NSO 

at 

(A) 

Date Maximum NSO concentration (at specific station) B 

 
SC LT Th CC LHi LK LB SoS LS NC STC MP BG Pr LC BC NeC De 

SC 92 6-M-05 92 108 100 68 86 86 70 88 78 72 68 50 70 46  52 44 48 6 

LT 108 6-M-05 92 108 100 68 86 86 70 88 78 72 68 50 70 46  52 44 48 6 

Th 108 31-M-07 86 106 108 86 114  64 100 96 82 92 52 76 82 86 92 92 76 13 

CC 100 26-F-02 76 82 80 100 66 68   84 68 82 78 96 78 54 70 76 94 6 

LHi 114 31-M-07 86 106 108 86 114  64 100 96 82 92 52 76 82 86 92 92 76 13 

LK 100 10-F-00 76 80 78 82 68 100 64  84 76 72 68 86  80 90 80 94 6 

LB 82 12-M-08 74 92  94 94 88 82 88 90 94 68 80 80 98 104  84 102 14 

SoS 110 11-M-06 70 70 92 54 64 82 70 110 80 74 74  84 70 86 78 92 90 7 

LS 100 30-M-08 86 96 90 86 90 94 76 100 100 96  74 90 92 100 100 76 94 14 

NC 100 2-M-08 66 76 70 82 80 74 66 68 84 100 96 92 94 94 90  98 90 10 

STC 118 8-N-01 60 64 58 74 66 76 56 58 66 78 118 62 70 82 66 90 72 78 3 

MP 114 22-F-08 56 68 58 72 60 62 58 62 68 70 70 114 82 80 90 94 94 92 6 

BG 112 3-M-00 74 72 68 74 56 68 60  92 86 50 44 112  94 84 92 94 7 

Pr 108 21-M-08 78 90 78 94 100 86 72 96 94 96 70 98 96 108 112  86 104 13 

LC 112 21-M-08 78 90 78 94 100 86 72 96 94 96 70 98 96 108 112  86 104 13 

BC 106 24-M-00 36 56 56 72 10 30 26  60 42 72 22 66  20 106 86 88 3 

NeC 110 17-M-06 78 88 82 94 80 80 72 96 98 86 90  80 104 92 86 110 90 13 

De 112 7-M-02 64 76 72 78 54 66 54 64 80 88 82 76 106 86 88 104 100 112 8 

B- No. of stations with NSO ≥80 µg/m3 
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Reply to Reviewer’s comments (Second revision):  

We are thankful to the reviewer for reviewing the manuscript and for the helpful and positive 

comments. In response to the reviewer’s comment (second revision), we have replied to the 

comment in this document and made required changes in the manuscript. As per the reviewer 

suggestion we have carefully revised the ‘conclusion’ section of the manuscript and 

incorporated all the suggestions/corrections. All the changes in the manuscript (second revision) 

are highlighted in ‘Red’ colour.  

 

Reviewers' comments: 

The manuscript improved against the originally submitted version. The study should be 

conclusive, which it is not really in the present stage. All repetitions from the results section 

should be removed from the conclusion section. The only conclusion really made (last 

paragraph) should be expanded in order to guide further investigation of the topic /phenomena: 

How can parameters influencing NSO events be addressed, which situations and sites are most 

promising to elucidate the mechanism (in the light of previous knowledge, referenced in the 

introduction)? 

 

Reply: As per the reviewer suggestion we have carefully revised the ‘conclusion’ section of the 

manuscript, deleted repetition and incorporated all the suggestions/corrections. All the changes 

in the manuscript (second revision) are highlighted in ‘Red’ colour. We rewrote the last 

paragraph of the conclusion, which is as follows: 

‘Significant research is done on daytime photochemistry and O3 air quality. Comparatively 

less attention is paid to the investigation of nighttime atmospheric chemistry, particularly 

nighttime enhancement of O3. Since O3 production ceases at nighttime, a plausible reasoning for 

observed bimodal pattern of O3 with enhanced NSO concentration during nighttime has to be 

governed by complex combination of atmospheric transport processes, topography and 

corresponding meteorological conditions. To fully understand the mechanism of enhancement 

of NSO at any location, its spatiotemporal extent and severity; in-depth analysis of various 

meteorological parameters (for example NBL, wind speed and direction, Bulk Richardson 

Number (BRN), potential temperature, etc.,) is essential. The multiple NSO enhancement events 

may occur over the same geographical location, as demonstrated in this study, but under entirely 

different atmospheric mechanisms (such as horizontal advection, vertical downdraft and mixing, 

passing of low level jets, etc.,) and warrants further investigation.’ 
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