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With the advent of new wide-field, high-cadence optical transient surveys, our understand-

ing of the diversity of core-collapse supernovae has grown tremendously in the last decade.

However, the pre-supernova evolution of massive stars, that sets the physical backdrop to

these violent events, is theoretically not well understood and difficult to probe observation-

ally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ∼ 3 hr

after explosion. Our rapid follow-up observations, which include multiwavelength photome-

try and extremely early (beginning at ∼ 6 hr post-explosion) spectra, map the distribution of

material in the immediate environment (<∼ 1015 cm) of the exploding star and establish that

it was surrounded by circumstellar material (CSM) that was ejected during the final ∼ 1 yr

prior to explosion at a high rate, around 10−3 solar masses per year. The complete disap-

pearance of flash-ionised emission lines within the first several days requires that the dense

CSM be confined to within <∼ 1015 cm, consistent with radio non-detections at 70–100 days.

The observations indicate that iPTF 13dqy was a regular Type II SN; thus, the finding that

the probable red supergiant (RSG) progenitor of this common explosion ejected material at

a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may

be common among exploding massive stars.

Why and how massive stars explode as supernovae is one of the outstanding open questions

in astrophysics. Massive stars fuse light elements into heavier ones in their core. During the

final years of their (relatively short, a few 106–107 yr) lifetime, these stars burn heavy fuel, the

fusion products of hydrogen and helium, until an iron core grows and ultimately collapses. Stellar

evolution in these final years, which sets the initial conditions for the final collapse and explosion
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of such stars as supernovae (SNe), is poorly understood1. Direct observations of these processes is

challenging, as stars in these brief final stages are rare. Statistically, it is very likely that not even

a single star that is within 1 yr of explosion currently exists in our Galaxy.

Recently, growing observational evidence has suggested the existence of pre-explosion el-

evated mass loss and eruptions2, 3, 4, 5. Accommodating these findings, a handful of theoretical

studies6, 7, 8, 9 were carried out exploring possible pathways by which massive stars may become

unstable during their terminal years, leading to the observable signatures of increased mass loss,

variability, and eruptive episodes prior to the terminal explosion. Material ejected by the star in the

year prior to its demise may imprint unique signatures on the emission observed from the young

SN event, but as this material will be quickly swept away by the expanding explosion debris, such

detections require rapid observations to be secured within a few days of explosion2, 10. A handful

of recent observations provide evidence for enhanced mass loss and eruptive episodes during the

terminal years prior to explosion, but mainly for rare subclasses of SNe which comprise at most

a few percent of the population. The observations presented here of iPTF 13dqy indicate that it

was a fairly regular Type II SN, similar to ∼ 50%11 of exploding massive stars, and thus may

strengthen the hypothesis that the ultimate collapse of the core and the preceding vigorous ejection

of mass from the outer envelope are causally coupled. In addition, the structure of the outer enve-

lope of massive stars during the very late stages of evolution may significantly differ from what is

predicted by stellar evolution models12, 13.

On 2013 Oct. 6.245 (UTC dates are used throughout this paper), a new transient source with
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rPTF = 18.6±0.05mag was identified within the nearby galaxy NGC 7610 (redshift z = 0.011855

(NED), d = 50.95Mpc) by the automated real-time discovery and classification pipeline of the in-

termediate Palomar Transient Factory (iPTF) survey14. A second image, confirming the detection,

was obtained 50 min later on Oct. 6.279 (Supplementary Fig. 1). The transient was automatically

saved in the survey’s database on Oct. 6.365 and was internally designated as iPTF 13dqy. This

event was independently discovered by K. Itagaki a day later on Oct. 7.468 and was assigned the

name SN 2013fs15.

Follow-up observations were promptly initiated, including X-ray and multicolour ultraviolet-

optical-infrared (UVOIR) photometry (Fig. 1) and multi-epoch rapid spectroscopy (Fig. 2). A

third-order polynomial fit to our early flux measurements (Fig. 1, top, inset) is used to estimate

that the first light (shock breakout following the explosion) occurred on Oct. 6.12 (±0.02 d),

∼ 3 ± 0.5 hr before the first detection. A series of spectra, the earliest ever taken of a SN, were

obtained using LRIS mounted on the 10 m Keck-I telescope to follow the evolution of flash-ionised

emission lines (Fig. 2). Our flash spectroscopy2 sequence initially (6–10 hr post-explosion) shows

unprecedented strong high-ionisation emission lines of oxygen (O IV, O V, O VI), which disappear

within the following 11 hr. Our t = 21 hr spectrum still shows He II and N V; the He II lines persist

until day 2.1. Throughout this period, hydrogen Balmer lines of decreasing strength are observed.

Unlike SN 2013cu (iPTF13ast)2 and SN 1998S16, which show prominent ionised nitrogen lines in

their early-time spectra, nitrogen lines in the early spectra of iPTF 13dqy are much weaker than

those of oxygen. The width of the narrow core of the Hα line measured from our highest-resolution

spectrum (see Sec. 3 of the Methods; hereafter Methods §3; Supplementary Fig. 2) indicates

5



an upper limit on the expansion velocity of the emitting material of 100 km s−1. By day 5 the

spectra remain blue, but no longer show prominent emission features. Later spectra (see Methods

§3, Fig. 3) develop broad P-Cygni lines typical of Type II SNe. Along with the flat, plateau r-

band light-curve evolution (Fig. 1, bottom), our observations indicate that iPTF 13dqy resembles a

Type II-P SN. The evolution of the expansion velocity of the SN ejecta for the Hα,Hβ, and Fe II

λ5169 lines (shown in Supplementary Fig. 3) is also in agreement with the behaviour of regular

SNe II17, 18, 19.

Following ref. 2, we interpret the early spectral evolution as the result of flash ionisation and

recombination of dense CSM surrounding the progenitor of iPTF 13dqy. Using the methodology

and model assumptions similar to those of ref. 20 (see Methods §6), we produced model spectra for

varying combinations of the inner boundary (emitting) radius,Rin, the bolometric luminosity at this

inner boundary, LSN, and the mass-loss rate from the progenitor star, Ṁ . All models were produced

for abundances that are consistent with solar, allowing for enhancement of the surface helium

abundance, and a progenitor wind velocity of vwind = 100 km s−1. We find values of Ṁ = (2–4)

×10−3 M� yr
−1, Rin = (1.3–1.4) ×1014 cm, LSN = (2.0–3.5) ×1010 L�, and associated effective

temperatures (Tin, according to the Stefan-Boltzmann law) at the base of the wind in the range

∼ 48–58 kK.

Fig. 4 displays the comparison of the obtained model spectra to the first Keck spectrum at

∼ 6 hr after the explosion. As evident from the plots, the models bracket the observed early spec-

trum. The model for the highest Tin = 58.5 kK has virtually no O V or O IV emission, while the
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53 kK model does match the observed features well and seems to follow best the overall ionisation

structure. This model should be considered illustrative only, as it is possible that the temperature

structure of the outflow is not fully reproduced by the model (e.g., due to a nonspherical geometry

or a light-travel-time effect). However, we can estimate that the average effective temperature at

the base of the outflow is Tin ≈ 53±5 kK, and also that the abundances of the emitting material are

consistent with solar composition and increased surface He abundance typical of evolved massive

stars.

Since the value of vCSM = 100 km s−1 sets an upper limit on the progenitor wind speed from

our observations, and typical RSG winds have lower velocities ∼ 10–15 km s−1 (e.g., ref. 21), we

also calculated models for vCSM = 15 km s−1. Since Ṁ scales linearly with vwind (e.g., Eq. 1

of ref. 20, these models resulted in almost an order of magnitude decrease in the mass-loss-rate

estimate, Ṁ = (3–6) ×10−4 M� yr
−1, with Rin and LSN almost identical to the above values,

obtained for the higher vCSM (see Methods §6). We therefore derive an overall mass-loss rate

of Ṁ = (0.3–4) ×10−3 M� yr
−1 for the possible range of vCSM ≈ 15–100 km s−1. However, it

should be emphasised that although typical RSG wind velocities are well below ∼ 100 km s−1, a

short, elevated, perhaps eruptive mass-loss episode may result from a different physical mechanism

than that driving a normal wind, and thus have higher wind velocities. On top of that, the O VI

doublet (λλ3811, 3834) lines that are resolved in our earliest spectra show Doppler broadening

corresponding to velocities significantly higher than 100 km s−1. This line is formed in the inner

parts of the outflow, and even if the velocity decreases at larger radii, a significant fraction of

the outflow (progenitor wind) will be moving with much higher velocities than those assumed for
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typical quiescent RSGs.

Additional independent lower-limit estimates on the mass-loss rate are obtained from the

Hα luminosity (assuming an r−2 spherical wind-density profile), as well as from the prominent

electron-scattering wings of the emission-line profiles during the first several days. The derived

lower limits all point to Ṁ >∼ 10−3 M� yr
−1 (see Methods §5).

Our models constrain the temperature using the line features and predict a continuum shape

that follows a modified blackbody curve. The models can accommodate only a low extinction by

dust (E(B − V )tot = 0.05mag) while maintaining this match. In view of the estimated Galactic

(Milky Way) extinction toward this direction (E(B − V )MW = 0.035mag), the models indicate a

very small residual extinction contributed by the SN host galaxy (E(B−V )host ≈ 0.015mag). This

is consistent with the blue colours of the star-forming knot at the location of the SN (External Data

Fig. 1) as well as the nondetection of interstellar material (ISM) absorption lines (e.g., Na I D) from

the host. The dearth of local dust surrounding the SN further supports the lack of persistent high

mass loss from the progenitor, as such massive outflows are predicted to be locations of efficient

dust formation22.

Assuming that the material around the progenitor star expanded at <∼ 100 km s−1 and was

swept up by the SN ejecta moving at typical velocities of 104 km s−1 within ∼ 5 d after explosion

(the spectra of day 5 being blue and featureless), the flash-ionised CSM was emitted within∼ 500 d

(this value increases inversely with the actual wind velocity) prior to explosion and is confined to

within< 5×1014 cm, consistent with our modeling results. Assuming a constant mass-loss rate (for
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the assumed upper vwind = 100 km s−1) of ∼ 3× 10−3 M� yr
−1, as deduced above, the estimate of

the total mass that was lost during this pre-explosion enhanced mass-loss phase is a few 10−3 M�,

regardless of vwind, at most.

Additional constraints on the physical scale of the emitting region may be derived from the

early emission-line evolution. As seen in Fig. 2, in the spectrum at 21 hr, the O VI emission lines

have completely disappeared. Assuming a short ionising burst from a source surrounded by a

spherical shell of material of radius r that promptly recombines, the resulting recombination lines

will be visible for at least the light-travel time between the point facing the observer and points

on the equatorial ring perpendicular to the line of sight – i.e., r/c, where c is the speed of light.

The nondetection of the high-ionisation O lines 21 hr after explosion thus places an upper limit

on the radius of the emitting region, r <∼ 2 × 1015 cm (21 light-hr). By the same arguments, the

persistence of these lines with little evolution over the 4 hr around 6–10 hr after explosion (Fig. 2,

bottom panel) implies a lower limit of ∼ 4 light-hr, r >∼ 4× 1014 cm. The high wind densities that

persist throughout the emitting region (ne ≈ 1010 cm−3) imply short recombination times, on the

order of minutes2, so the emitted spectra are expected to respond promptly to the evolving radiation

field as assumed.

A possible caveat to the lower limit is that the assumption of a short ionising burst operating

for less than 4 hr may not be valid. However, light-travel effects naturally explain the fact that

there is hardly any change in the ionisation structure during at least those 4 hr, whereas the model

temperature drops significantly (by a factor of ∼ 1.5; Supplementary Fig. 4) during this period
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with little observable spectral evolution. Our data and models are therefore all consistent with

a confined zone of dense CSM deposited by the exploding star within a few hundred days prior

to its terminal explosion (compatible with, for example, the proposed delay times from an early

hydrogen-rich envelope ejection following the violent off-centre silicon degenerate flash and the

terminal iron-core collapse as computed in ref. 6 for stars with initial masses around 10M�).

To test whether the CSM with which the SN interacts at early times (and that we detect

in the optical spectra) is part of an extended CSM structure originating from continuous stellar

winds, we first consider the lack of narrow lines in spectra obtained after day 5. Intense mass loss

(Ṁ > 10−4 M� yr
−1) is typical of SNe IIn23 and manifests itself in sustained optical emission lines

that are not seen in our observations (Fig. 3). This argues against a constant, high wind-like mass

loss from the progenitor. Next, adopting the density estimates we derived from the optical flash

spectra, we extrapolate the densities to larger distances assuming a wind-like r−2 density structure.

As can be seen in Fig. 5, such an extended wind would have led to detectable radio emission at cm

wavelengths, for mass-loss rates in the range 6 × 10−6 <∼ Ṁ <∼ 10−3 M� yr
−1 and the assumed

shockwave and wind velocities. However, our Jansky Very Large Array (VLA) observations (see

Methods §7) at central frequencies of 6.1 GHz and 22 GHz obtained on 2013 Dec. 17, about 70 d

after explosion, resulted in null detections (Fig. 5), as did a second VLA observation obtained a

month later. We consider the possible complicating effects of free-free absorption in Methods §7.

These strengthen the suggestion for the episodic nature of the elevated pre-explosion mass loss.

X-ray observations, conducted with the Swift X-Ray Telescope (XRT) between days 1 and
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25 after explosion, set a combined upper limit on the X-ray luminosity of LX <∼ 4.7× 1040 erg s−1

(see Methods §2). Preliminary calculations done using customised multigroup hydrodynamic sim-

ulations of shock breakout (SBO) in an optically thick, steady mass-loss wind, calibrated to the

density assumed above (see Methods §8 for details), suggest an X-ray luminosity in excess of

1042–1043 erg s−1, and thus reveal that it is likely that the SBO did not take place within the engulf-

ing dense wind. It is therefore highly plausible that the SBO occurred at the edge of the progenitor

star, or within an optically thin CSM (τ ≈ a few). This further suggests that the dense nearby CSM

may have been detached from the surface of the progenitor star. A full three-dimensional model in-

cluding SBO and radiative transfer in nonspherical configurations may be required to fully explore

the set of constraints provided by the data.

In view of the above, we model the early-time multiband UVOIR light curves using the

methods of ref. 24 (hereafter, RW11), applicable to the spherical expansion phase following SBO.

We fit an RSG model (without wind) to the multicolour data (Supplementary Fig. 8) and obtain

an estimate of the radius of the exploding star and the energy per unit mass of the explosion

(Supplementary Fig. 9). The energy value obtained (∼ 5 × 1050 erg, assuming an ejecta mass

of 10M�) is broadly consistent with those expected from previous studies of SNe II-P (see also

ref. 25), while the range of progenitor radii (100–350R�; 2σ) is on the low side of generally quoted

values, though some studies do call for a reduction of RSG radii for typical SNe II (e.g., ref. 26).

The models of RW11 assume an RSG progenitor with a standard density structure. However, the

mass-loss episode reported here (and additional possible mass-loss/stripping episodes during the

progenitor’s advanced evolutionary stages; see, e.g., the study by ref. 27) may well have modified
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the progenitor structure, and the escaping radiation may also be altered by reprocessing in the

detached CSM shell. A full theoretical investigation of this physical setup lies beyond the scope of

this article.

Ref. 28 presents an alternative scenario to produce confined CSM around RSG SN progen-

itors due to photoionisation by an external radiation field. This model, which could potentially

remove the need for an elevated mass-loss episode promptly before the SN explosion, seems to

explain static CSM shells more massive than we find here and also at greater radial distances

(Mshell ≈ 10−2–101 M�, R ≈ 1016–1018 cm, as specified for typical wind properties and exter-

nal radiation fluxes). Additional careful modeling is required to test whether such a scenario, or

variants of it, can also explain our observations.

We conclude that our study has established that we have observed a regular SN II that resulted

from an explosion of a massive star, most likely an RSG, surrounded by dense CSM confined to

lie within a few 1015 cm from the star (see Fig. 6). Though several scenarios try to explain the

existence of a surrounding confined CSM, our preferred interpretation is that this material was

ejected by the star during the few hundred days prior to its explosion. As shown in Fig. 6, our

observations clearly do not rule out the possible existence of a weaker extended wind, expelled

by the RSG over a long duration. Theoretical works (e.g., ref. 9) suggest the possible existence

of enhanced mass loss, in the form of pulsationally driven superwinds, during the late stages of

massive-star evolution. Therefore, it is possible that the RSG wind profile may be steeper than

the assumed r−2 profile closer to the star, creating a smoother transition between the extended
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wind and the inner dense CSM, as depicted in Fig. 6. We note the remarkable resemblance of

this proposed CSM configuration to the density profile calculated by ref. 29 (Fig. 1 in that paper)

for the inner CSM component of SN 1998S (a type IIn-like SN, which showed more persistent

signatures of CSM interaction). Our study suggests that episodic enhanced mass loss by massive

stars just prior to their terminal explosion, as proposed by several theoretical studies, also occurs

among the progenitors of common types of SNe. This may further strengthen the possibility of a

causal connection between the precursor eruptive mass loss and the ultimate collapse of the core

shortly thereafter30.

The internal structure of a SN progenitor a short time prior to its collapse is among the ma-

jor uncertainties regarding SN explosion modeling, thus strongly motivating further exploration of

newborn SNe. While our study here focuses on a single event with exceptionally early follow-up

observations, available information — such as the 2009–2014 PTF sample described in ref. 10

(which includes the Type II SN PTF11iqb also described by ref. 31) as well as additional flash-

spectroscopy events from the last several years — indicates that many core-collapse SNe present

combinations of low-expansion-velocity emission lines, originating from various elements and

ionisation levels, when observed sufficiently soon after explosion. Future flash-spectroscopy ob-

servations of a larger sample of events would allow us to determine exactly how ubiquitous this

phenomenon is, placing stronger constraints on the final stages of massive-star evolution.
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Figure 1 The early discovery of iPTF 13dqy and the prompt ensuing follow-up observa-

tions, multiband photometry and spectroscopy, enabled the direct probing and mapping of
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the nearby environment surrounding the progenitor. Top: A polynomial fit to the Palomar

48-inch r-band light curve is used to estimate that the explosion occurred on 2013 Oct.

6.12; thus, this event was caught ∼ 3hr after explosion and the first spectrum was ob-

tained ∼ 6hr post-explosion. The r-band light curve attains a peak absolute magnitude of

MR = −17.40±0.15 and settles on a plateau at MR = −17.00±0.15mag. Pre-explosion 3σ

upper limits (nondetections) are denoted with triangles. Dates of spectroscopic observa-

tions are marked with vertical lines at the top. See inset for the first 50 hr (with unbinned

photometry points). Bottom: Multicolour UVOIR observations, alongside the observed

spectral evolution (Fig. 3), indicate a resemblance to a Type II-P core-collapse SN. The

various bands have been shifted in magnitude with respect to the r band for clarity, as

noted in the legend. The inset shows a backward extrapolation of selected light curves to

the date of discovery (the first P48 detection; see methods for details).
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Figure 2 Early-time flash spectroscopy of iPTF 13dqy reveals flash-ionisation signatures

during the first 2 d after explosion. High-ionisation oxygen emission lines (O VI λλ3811,
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3834, O V λ5597, O IV λ3410) dominate during the first 6–10 hr (the O V feature is affected

by an instrumental artifact; see Methods §6), while N V λ4604 and He II λ4686 persist for

21 hr and 2.1 d, respectively, along with the hydrogen Balmer series. All throughout these

first several days the underlying continua are blue, and by day 5 the spectrum turns nearly

featureless. The indicated epochs are all with respect to our adopted explosion time

(Fig. 1). An overlay of the four early-time Keck spectra (6–10 hr), after subtraction of a λ−3

curve, normalised to fit the continuum of each spectrum in the wavelength range 5000–

6000 Å, is shown in the bottom panel, revealing the similarity of the emission features

during this 4 hr timespan. N V begins to emerge in the last epochs (9–10 hr). All spectra

have been calibrated to the PTF r-band photometry and corrected for redshift and Galactic

extinction (E(B − V )MW = 0.035mag).
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Figure 3 Spectra of iPTF 13dqy obtained between 8 and 57 days after explosion, show-

ing P-Cygni profiles of the Balmer series and additional typical elements, confirm a regular

Type II SN identification. The Balmer series, Ca II (the near-infrared triplet and the H&K

lines), Fe II, and Mg I are marked for the specified expansion velocities. See the spec-

troscopic log (Table 1) for details of the spectra. All spectra presented in this study are

publicly available via WISeREP32 (http://wiserep.weizmann.ac.il).
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Figure 4 The best-fitting CMFGEN models to the observed early-time spectrum (6 hr

post-explosion) of iPTF 13dqy reveal a temperature of the line forming region around
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50–60 kK. The model spectra are shown in colour (top: all models over-plotted, bottom:

shifted for clarity), the early Keck spectrum is shown in black (applying a total reddening

of E(B − V )tot = 0.05mag and RV = 3.1 to best match the continuum spectral energy

distribution). Line features (bottom) indicate that the 58 kK model (top dot-dashed orange

curve) does not recover the O V line, while a cooler model (48 kK; red) predicts too weak

O VI lines. The three model spectra bracket the observed early-time spectrum; the 53 kK

model (dashed blue) best recovers the oxygen ionisation structure. See Methods §6 for

details.
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Figure 5 Radio non-detections rule out an extended dense wind structure around the

progenitor of iPTF 13dqy. The plotted coloured curves display theoretical light curves

of radio emission originating from the interaction of SN ejecta with an extended CSM.

These extended CSM structures are assumed to be a result of a constant mass-loss rate

through stellar winds. Our measured limits (triangles) on the late-time radio emission

(at ∼ 70, 100d) rule out a wide range of mass-loss rates. In particular, our limits show

that the mass-loss rate estimate required to explain the early optical data could not have

been sustained over long periods. Otherwise, an extended CSM structure would have

formed with sufficiently high density to be detected in the radio at late times (up to a
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limiting free-free absorption regime; see Methods §7). Models were calculated assuming

wind velocities of 100 km s−1, a SN shockwave expanding at 104 km s−1, and an electron

power-law energy distribution with a power-law index of p = 3 and equipartition.
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Figure 6 The proposed CSM configuration surrounding the progenitor of iPTF 13dqy,

resulting from our multiwavelength observations — a CSM density profile that is both

nearby and confined. The figure summarises the CSM estimates we derive from anal-

yses of the early-time spectra (at r ≈ 1014 cm) together with the region excluded by the

later radio observations. The solid diagonal coloured lines denote constant mass-loss

rates between 10−7 and 10−1 M� yr
−1 (following ρ = Ṁ/4πvwindr

2, vwind = 100 km s−1) as-

suming an r−2 wind density profile. For an explanation of the lower limit on the mass-loss

rate as obtained by measurement of the Hα luminosity, see Methods §5. The early-time
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spectra modeling region is based on the CMFGEN model results (main text and Methods

§6). Also indicated is the overall phase space of Type IIn SNe, based on the compilation

appearing in ref. 23, where a span of Ṁ between 10−4 and 10−1 M� yr
−1 is found to exist

based on analyses of spectra from around 10 d and onward (> 100d; the corresponding

radii assume vshock = 104 km s−1). The top abscissa marks the timespan from explosion

for the corresponding radii (i.e., when the shock reaches the corresponding radii, applying

the above vshock). This schematic figure shows that a CSM with Ṁ >∼ 10−3 M� yr
−1 cannot

be part of an extended (r−2) wind structure. The lack of persistent emission lines for an

extended period of time (as seen for SNe IIn), as well as the constraints obtained from the

radio nondetections, indicate that the dense nearby CSM, with Ṁ around 10−3 M� yr
−1,

must be confined. Overplotted is a cartoonish visualisation of the proposed CSM struc-

ture (the shaded areas convey the span of possible density profiles): a nearby, possibly

detached, dense shell extending to a radius <∼ 1015 cm, and a possible underlying ex-

tended wind (with Ṁ <∼ 10−6 M� yr
−1) that is not ruled out. A possible smoother transition

between the two components is denoted by the region underlying the question mark.
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Methods

In this section we describe the data, methods, and theoretical calculations used in the main paper.

This work presents our photometric and spectroscopic observations of iPTF 13dqy (SN 2013fs)

during the first two months from discovery. PTF r-band observations were obtained by the PTF

survey camera mounted on the Palomar 48-inch Schmidt telescope14, 33. Photometry is measured

using our custom pipeline performing point-spread-function (PSF) photometry on PTF images af-

ter removing a reference image constructed from pre-explosion data using image subtraction. Us-

ing the multi-band UVOIR photometric measurements, we constructed fits to the spectral energy

distribution (SED) and derived the evolution of the blackbody (BB) temperatures and radii between

a few hours and 2 months after explosion. To derive estimates of the progenitor’s mass-loss rate, the

effective temperature, and radius of the emitting (CSM) region, we utilised the radiative-transfer

code CMFGEN34 to perform detailed spectroscopic modeling of the early-time spectra. We under-

took radio observations of iPTF 13dqy with the Jansky Very Large Array (VLA) at∼ 70 and 100 d

after explosion. These observations, at central frequencies of 6.1 GHz and 22 GHz, resulted in null

detections, which can be translated into limits on the CSM density. Finally, we derived estimates

for the radius and energy per unit mass of the exploding star using the formalism of RW11, and

discussed calculations of the SBO using custom improved models.

1 Discovery

The intermediate Palomar Transient Factory (iPTF35, which began operating in 2013 as a contin-

uation of PTF33, 14), utilises the 48-inch Samuel Oschin telescope (P48) at Palomar Observatory,
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California, USA to monitor the transient sky. Each P48 frame, consisting of 11 CCD chips, has a

wide field of view of 7.2 square degrees36. Fields are monitored with a short cadence (1–2 d), and

at least two images are taken per field per night, separated by >∼ 30 min, to search for transient

events. The images are processed37, 38, 39, a reference image is subtracted, and candidate transients

are selected with the aid of machine-learning algorithms40, 41, 42 for distinguishing a real astrophys-

ical source from bogus artifacts. A shorter list of candidates is then vetted by human “scanners”43

who save the candidates of interest and assign prioritised follow-up observations.

iPTF 13dqy was first detected on 2013 Oct. 6.245. Following the second detection confirm-

ing the discovery ∼ 50 min later (Oct. 6.279), it was automatically saved by a robotic process

(internally referred to as “the treasurer”) on Oct. 6.365. The last nondetection at its location,

at a limiting magnitude of mr = 21 in the PTF r band, is from 22 hr before the first detection.

A follow-up campaign was promptly initiated by the astronomer on duty, including a very early

sequence of spectra at the Keck-I telescope, beginning a mere half hour after the candidate was

saved.

The P48 discovery image and a Sloan Digital Sky Survey (SDSS) colour image of the loca-

tion and host galaxy are shown in Supplementary Fig. 1.

2 Photometry

Shortly after the discovery with the P48, we initiated an extensive follow-up campaign; the multi-

band light curves are presented in Fig. 1. Less than 3 hr after the first P48 detection, we began

obtaining photometry with the Palomar 60-inch telescope (P60; ref. 44) in the g, r, and i filters.

32



Beginning 17 hr after the first detection, Swift-UVOT photometry was obtained with filters UVW2,

UVM2, and UVW1, accompanied by UVOT U , B, and V photometric measurements from day

3.6 onward. An LCOGT multiband photometry campaign was initiated around 1 d after discovery,

while RATIR observations (in filters i, Z, Y , J , and H) began just prior to day 2 after discovery.

Observations in the r band were obtained by the iPTF survey camera mounted on the P48

telescope14, 33. Magnitudes were measured using our custom pipeline performing point-spread-

function (PSF) photometry on iPTF images after removing a reference image constructed from pre-

explosion data using image subtraction. Swift Ultraviolet absolute AB magnitudes were measured

using standard pipeline reduction and are corrected for host-galaxy contamination using late-time

Swift images. All measurements were corrected for Galactic (Milky Way) extinction using the

ref. 45 reddening law (assuming RV = 3.08).

To remove contamination from the underlying host galaxy, SDSS frames were subtracted

from the P60 images using a similar technique to that applied to P48 data. The resulting images of

the SN were then photometrically calibrated with respect to several SDSS point sources within the

P60 field of view.

LCOGT magnitudes were obtained using PSF fitting after background removal using a low-

order polynomial fit, without template subtraction. The LCOGT U , B, V , R, and I magnitudes

were converted from the Vega to AB systems using the conversion values as specified in Table 1

of ref. 46. The RATIR J and H magnitudes were converted from Vega to AB according to the

conversion values given in Table 7 of ref. 47.
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The Swift-XRT (ref. 48) observations, conducted between days 1 and 25 after explosion

(with a roughly constant cadence of 1–2 d), were reduced using the tools of ref. 49, applying a

9′′ aperture radius centred on the SN position and correcting for 50% flux losses. We examined

several binning schemes relative to the estimated explosion time, JD0 = 2,456,571.62. Binning

the measurements into three segments, we find two marginal (< 3σ) detections and an upper limit

as follows (in counts per kilosecond, specifying 1σ and 2σ errors):

< t >= 3.4 d [0–5], 0.42+0.40,+0.82
−0.23,−0.33 ct/ks,

< t >= 11.0 d [5–15], < 0.67 (2σ) ct/ks, and

< t >= 20.3 d [15–25], 0.38+0.37,+0.75
−0.21,−0.30 ct/ks.

Assuming a power-law spectrum with a photon index of 2, and Galactic extinction NH = 3.9 ×

1020 cm−2 toward the SN location, the conversion of count rates to flux follows 1 ct/s ≈ 4 ×

10−11 erg cm−2 s−1, giving X-ray luminosities of LX = 6.56 × 1040, < 1.05 × 1041, and 5.94 ×

1040 erg s−1, respectively (applying a distance of 50.95 Mpc). However, these are all marginal

(< 3σ) detections, and the flux could originate from noise fluctuations or the galaxy rather than

the SN. Future deep observations may provide a better background estimate.

A coadd of all data points provides a one-sided 95% confidence limit of < 3 × 10−4 ct/s,

which corresponds to an upper limit on the X-ray luminosity of LX <∼ 4.7× 1040 erg s−1.
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3 Spectroscopy

All spectra were reduced using standard pipelines. Our earliest (6–10 hr) and latest (57 d) spec-

tra were obtained using the Low Resolution Imaging Spectrometer (LRIS50; Keck observations PI

D. Perley) mounted on the Keck-I 10 m telescope (using the 600/4000 grism and 400/8500 grat-

ing). A careful procedure was applied for subtracting the flux of the host from the four early-time

Keck spectra, involving the subtraction of an offset H II region spectrum in each frame. As a result

of this, the narrow-component emission lines in the early Keck spectra appearing in Fig. 2 originate

from the flash-excited circumstellar emission and are not contaminated by the underlying host H II

emission. A higher-resolution spectrum was also obtained with Keck-I/LRIS (using the 1200/7500

grating) on the first night, at ∼ 10.3 hr after the estimated explosion time. A section of this spec-

trum centred on the Hα line is shown in Supplementary Fig. 2, together with a combination of

Gaussian and Lorentzian fits to the narrow and wide components, respectively. The instrumental

full width at half-maximum intensity (FWHM) is ∼ 2.35 Å (from analysis of night-sky lines and

of the background nebular Hα emission, and consistent with the quoted resolution of the grating),

so the narrow component is likely unresolved down to ∼ 100 km s−1 (thus placing an upper limit

on the velocity dispersion of the emitting material).

Additional spectra were obtained using the Double Beam SPectrograph (DBSP51) mounted

on the 5.1 m Palomar Hale (P200) telescope, ALFOSC mounted on the 2.56 m Nordic Optical

Telescope (NOT), FLOYDS mounted on the 2 m Faulkes Telescope South (FTS) (day 3), DEep

Imaging Multi-Object Spectrograph (DEIMOS52) mounted on the Keck-II 10 m telescope, DIS

mounted on the 3.5 m Apache Point Observatory (APO) telescope, ISIS mounted on the 4.2 m
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William Herschel Telescope (WHT), and Kast53 mounted on the 3 m Lick Shane telescope.

Fig. 3 displays the later spectra, extending from day 8 through ∼ 2 months after explosion,

revealing developed P-Cygni profiles typical of spectroscopically normal SNe II. Evolution of the

expansion velocity of the SN ejecta from the absorption P-Cygni features of several species is

shown in Supplementary Fig. 3.

The log of spectroscopic observations is presented in Table 1. All spectra and their accom-

panying meta-data are publicly available via WISeREP32 (http://wiserep.weizmann.ac.il).

4 Bolometric Luminosity and Blackbody Fits

Using the multiband UVOIR photometric measurements interpolated to a common grid, we con-

structed fits to the SED and derived the evolution of the blackbody (BB) temperatures and radii

between∼ 3 hr (the first P48 detection) and 2 months after explosion. It should be emphasised that

the treatment as a BB is an approximation; during the first several hours after explosion the SEDs

seem to roughly follow a modified BB spectrum below the peak, Lν ∝ ν or Lλ ∝ λ−3.

For each point in the temporal grid, the best-fit BB temperature was obtained as follows.

For each trial temperature, within a scanned range of temperatures, we calculate the synthetic

photometry of the BB spectrum, in the specific bands for which we have observations. Then we

can calculate the root-mean square (RMS) difference between the observed magnitudes and the

calculated (synthetic) magnitudes and look for the best-fit BB temperature. For each derived best

BB temperature, the best-fit angular radius can be obtained, and this is turned into the physical
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radius (cm) by applying the known distance to the SN.

These values are plotted in Supplementary Fig. 4, with the temperature estimate obtained

from the modeling of the earliest spectrum (described in Methods §6) overplotted. In order to

investigate the earliest emission (beginning with the first P48 r-band detection), we carefully ex-

trapolate the P60 g and i and the UVOT UVM2 light curves (for which we have observations

beginning ∼ 3 and 17 hr after the first detection, respectively) back to the first P48 detection. The

BB temperature estimate for this early point is in excess of 100 kK and should be taken with due

caution; we estimate its uncertainty range at 60 kK.

In Supplementary Fig. 5, we display estimates of the bolometric flux as obtained by three

methods. The most conservative lower limit on the bolometric luminosity is based on our sequence

of optical spectra, by integration of the total flux under each spectrum (and within the wavelength

range covered by the spectrum). Next, we estimated the bolometric light curve based on the multi-

band photometric measurements, using the same interpolated common grid mentioned above. Ex-

perimenting with different fits and interpolation schemes of the SED (see figure caption), based

on the observed magnitudes at the different bands, produces the span shown by the grey shaded

area. Because our multiband (UVOIR) photometric measurements cover a wider wavelength range

during most periods of these first 2 months after explosion, these bolometric flux estimates set a

tighter lower limit to the actual bolometric light curve. Finally, we plot a bolometric luminosity

light curve based on the derived BB temperatures and radii estimates, as described above, by ap-

plying Lbol = 4πR2
BBσT

4
BB. According to these BB estimates, the bolometric luminosity at ∼ 3 hr

after explosion surpasses 1044 erg s−1. It can also be seen in the figure that these values are in good
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agreement with the previous Lbol estimates, based on the multiband photometry, especially from

around day 4 onward.

5 Line Fluxes

In addition to the other estimates of the mass-loss rate and the radius of the emitting (CSM) region,

described in the main text, we can also obtain an order-of-magnitude estimate for the mass loss

based on the measured Balmer Hα luminosity, following the expressions given by ref. 54.

A basic underlying assumption is that the CSM around the progenitor has a spherical wind

density profile of the form ρ = Kr−2, where r is the distance from the progenitor and K ≡

Ṁ/(4πvwind) is the mass-loading parameter (Ṁ being the mass-loss rate and vwind the wind ex-

pansion velocity).

Based on the maximal Hα line flux (Supplementary Fig. 6), fHα = 6.25×10−15 erg s−1 cm−2

as measured from the Oct. 7 (day 1.4 from explosion) FTS spectrum, the Hα luminosity is

LHα = fHα4πd
2 = 1.94×1039 erg s−1, where d = 50.95 Mpc is the luminosity distance to the SN.

According to Eq. 6 in ref. 54, a relation can be obtained between the mass-loading parameter

K, the Hα luminosity, and the radius: LHα <∼ AK2/r, where A = 4πhναeff
H /(< µp > m2

p);

< µp >= 0.6 is the mean molecular weight, and αeff
H ≈ 8.7× 10−14(Teff/(10

4 K)0.89 (ref. 55). For

optical depth τ ≡ κρr ≈ 1 (κ taken to be 0.34), K ≈ r/κ (for the assumed wind density profile

ρ = Kr−2), and we obtain

r >∼ κ2LHα/A ≈ 1.1× 1014 cm, and
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ρ = 1/(κr) ≈ 2.6× 10−14 g cm−3, corresponding to a particle density of

n = ρ/(µpmp) ≈ 2.6× 1010 cm−3.

The derived mass-loading parameter is K = ρr2 >∼ 3.3 × 1014 g cm−1, which leads to a

lower-limit estimate of the mass-loss rate of Ṁ = 4πKvwind >∼ 7× 10−4( vwind

100 km s−1 )M� yr
−1.

Additional lower limits on the mass-loss rate can be placed by analysis of the electron-

scattering wings seen in the emission lines during the first several days. Following ref. 56 and

references therein, the optical depth to electron scattering of the wind can be expressed as

τwind = 1.16
(

Ṁ
10−3 M� yr−1

)(
vwind

100 km s−1

)−1( vshock
2×104 km s−1

)−1
t−1
days cm

−2.

The fact that the Hα line is dominated by electron scattering over the first few days, which

requires τelec.scatt. >∼ 2–3, therefore gives an independent mass-loss rate estimate of Ṁ >∼ 2 ×

10−3 M� yr
−1 (for the assumed wind velocity).

Supplementary Fig. 6 presents the manner by which the major observed emission lines of

the flash-ionised spectra disappear within the first several days after explosion. The Hα, Hβ, and

He II lines first increase in flux, reaching a maximum around day 1 from explosion. The He II line

disappears between days 2 and 3, whereas the highly ionised oxygen lines all disappear within the

first day.

6 Emission-Line Spectra Models

We performed detailed spectroscopic modeling of the early-time spectra of iPTF 13dqy using the

radiative-transfer code CMFGEN34 and the same model assumptions as described by ref. 20. The
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free parameters are essentially the boundary of the inner radius (Rin) and the bolometric luminosity

at this inner boundary (LSN). LSN and Rin, which determine the effective temperature (Tin) at

the inner boundary, govern the ionisation structure of the illuminated progenitor wind (the post-

SN spectrum) and also the absolute flux level. Having a flux-calibrated spectrum allows us to

determine both LSN and Rin (i.e., they are not assumed a priori), since models with the same

Rin but different LSN will have different absolute fluxes and ionisation structures (i.e., different

spectral line ratios). The other free parameters are the progenitor Ṁ , vwind (assumed constant,

since no hydrodynamical modeling is performed), and the chemical composition. The resulting

values described below were all obtained for models applying vwind = 100 km s−1. The best-fitting

models (shown in the figures) were obtained for a He-enriched surface composition (Y = 0.49,

X = 0.49, for the helium and hydrogen mass fractions, respectively); the rest of the abundances

are consistent with solar.

Fig. 4 displays the comparison of the obtained model spectra to the first Keck spectrum at

∼ 6 hr after the explosion. The three model spectra plotted in the figure are the results for the

following parameter combinations:

Red: Rin = 1.40× 1014 cm, LSN = 2.00× 1010 L� (Tin = 48.4 kK), Ṁ = 2× 10−3 M� yr
−1;

Blue: Rin = 1.33× 1014 cm, LSN = 2.75× 1010 L� (Tin = 53.5 kK), Ṁ = 3× 10−3 M� yr
−1;

Orange: Rin = 1.30× 1014 cm, LSN = 3.50× 1010 L� (Tin = 58.5 kK), Ṁ = 4× 10−3 M� yr
−1.

As is evident from the plots, these three models bracket the observed spectra quite well and

are the best obtained fits. One of the main issues is to reproduce the O VI λλ3811, 3834 and the

O V λ5597 features simultaneously. This is crucial because it is the only temperature indicator
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we have in the optical region (we need lines of the same species but different ionisation stages).

The O V emission needs Tin <∼ 49 kK to be consistent with the observations, but little O VI is

present then. O VI requires Tin >∼ 53 kK, but then O V is too weak. These values give a range of

temperatures that could be consistent with the data given our model assumptions — i.e., Tin ≈ 48–

58 kK. A multitemperature configuration may be required to further improve the fits.

Ṁ is mainly determined by the strength of the Hα and He II λ4686 lines. It varies according

to the choice of Tin, so values around (2–4) ×10−3 M� yr
−1 are consistent with the observations.

These assume vwind = 100 km s−1 and are thus upper limits; Ṁ can easily be scaled down for lower

vwind by multiplying the above Ṁ range by (vwind/100 km s−1), similar to the scaling expression

specified in Eq. 1 of ref. 20.

As mentioned, because the wind velocity of 100 km s−1 is in practice an upper limit, addi-

tional models were tested applying a low wind velocity of 15 km s−1, more typical for standard

RSG winds. The resulting estimates of the mass-loss rate are an exact match with the above scal-

ing relation, the Ṁ range drops down to (3–6) ×10−4 M� yr
−1, with Rin = (1.3− 1.4)× 1014 cm

and LSN = (2.2 − 3.7) × 1010 L� in order to match the observed flux. We do argue, however,

that a significantly elevated mass-loss rate over a short time (as we argue is the case here) can

be caused by different physical mechanisms than those driving a “normal” wind; thus, assuming

higher velocities, up to 100 km s−1, is reasonable.

The final models (shown in Fig. 4) were obtained for an enhanced He abundance of Y =

0.49; however, such enhanced surface He abundances (>∼ 0.40) are still consistent with solar initial
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abundances (e.g., refs 57,58). Fe is assumed to be solar because there are no Fe lines.

The enhancement of helium seems to be a pretty robust outcome from our modeling, but

this should also involve an enhancement in the surface nitrogen abundance. Although the possi-

ble nitrogen lines identified in the early spectra of iPTF 13dqy are quite weak compared to those

of SN 2013cu2 and SN 1998S (for which ref. 16 recently performed a thorough examination of

an early-time (few days) Keck-I HIRES spectrum), the fact that the strength of the N V line is

extremely sensitive to the temperature, as well as the location on top of the strong, asymmetric

electron-scattering wings of the He II λ4686 line, means that the nitrogen abundance can be con-

sistent with the required He enhancement. With the highly resolved SN 1998S spectrum16 serving

as a reference, we verify that the “shoulder” that develops blueward of the He II λ4686 in the

iPTF 13dqy spectra between∼ 10 and 21 hr does not emanate from N III λλ4634, 4641, but rather

from N V λλ4604, 4620.

The models do not allow He II λ4686, Hα, and O VI simultaneously at Tin >∼ 90 kK with

solar abundance. In high effective temperature models (T >∼ 100 kK), the oxygen abundance has

to be increased by a factor of 10 to get the O VI line, but then our models are not able to reproduce

the O V and O IV lines.

We note that whereas the identification of the O VI line is secure and the shape of the double

peak matches the models well, the identification of O V λ5597 is somewhat less certain. This line

is in a region of the spectrum that is affected by the dichroic and the overall shape of the feature

is contaminated by an instrumental artifact, thus not matching the exact line shapes as seen for the
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other emission lines and as obtained by the models. However, O V is a key line, and since it shows

up in other models in different parameter spaces (for example, WO Wolf-Rayet stars, for which

the emission of ionized oxygen dominates), we would be surprised if the observed feature does not

contain an O V line that is of real origin.

The feature around 5800 Å (redward of the O V line) that is present in the models is C IV,

and the feature around 3400 Å is O IV. A possible explanation for the complete nonexistence of the

C IV line in the observed early-time spectra could be that the carbon abundance is slightly lower

than solar.

With relation to the line-forming regions (Supplementary Fig. 7), both O V and O VI orig-

inate partially in areas of high Thomson opacity (τThomson ≈ 1–2), leading to electron-scattering

wings that are relatively stronger compared to, say, Hα.

Finally, we note that following the comparison of the early-time spectrum of SN 2013cu to

Wolf-Rayet (WR) models as done by ref. 2, here we also examined the PoWR grid of WR model

spectra (http://www.astro.physik.uni-potsdam.de/∼wrh/PoWR/powrgrid1.php) with respect to the

early flash-ionised spectra of iPTF 13dqy. While such a comparison is useful to provide a handle

on line identification and possible temperature regimes, our conclusion is that a direct comparison

(to the existing WR “families” of models) is not applicable for this particular case. The WR

high-temperature models that contain hydrogen are also nitrogen rich (e.g., WNL-H50), and the

carbon/oxygen-rich models (WC/O) all have very prominent C IV lines that are not observed in

our spectra.
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7 Radio Analysis

The interaction between SN ejecta and surrounding material can produce synchrotron emission;

thus, radio observations can provide powerful diagnostics of the CSM59, 60, 61, 62. The radio emis-

sion can be used to constrain physical properties such as the CSM density and the CSM shockwave

radius and velocity.

We observed iPTF 13dqy with the Jansky Very Large Array (VLA) on 2013 Dec. 17 (PI

A. Horesh). The observation was undertaken in both the C and K bands (at central frequencies

of 6.1 GHz and 22 GHz, respectively). Data reduction was performed using the AIPS1 software63

with 3C 48 as a flux calibrator and J2330+11 as a phase calibrator. The observations resulted in a

null detection with RMS values of 17µJy and 14µJy in the C and K bands, respectively. A second

observation took place on 2014 Jan. 18 (with the same configuration and setup), resulting again in

a null detection with an RMS of 12µJy and 10µJy in the C and K bands, respectively.

The above null detections can now be translated into limits on the CSM density. Adopting

the synchrotron self-absorption model of ref. 60, and assuming equipartition, we can calculate the

expected radio emission in both the C and K bands. We assume a continuous CSM which is a

result of a stellar wind with constant mass-loading parameters, A ≡ Ṁ/(4πvwind). In the context

of a model where the CSM is created by a constant wind, our radio observations rule out a large

subset of mass-loading parameters.

We find that a mass-loss rate in the range 6×10−6 <∼ Ṁ <∼ 10−3 M� yr
−1 cannot be sustained

1http://www.aips.nrao.edu
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out to a distance of∼ 1016 cm that we probe with the radio observation. The high end of this range

(∼ 10−3 M� yr
−1) is due to the large amount of free-free absorption. This value is obtained by

assuming a low electron temperature of 2× 104 K, as may be evident from our models. However,

there is uncertainty in determining the electron temperature at large distances at later times. The

free-free optical depth, which highly depends on the electron temperature (τff ∝ T−1.5
e ), may there-

fore decrease if a higher electron temperature is assumed to exist in the area probed by the radio

observations. Past studies have shown that the electron temperature at these distances can indeed

be as high as 105–106 K (e.g., ref. 64). For such higher electron temperatures, the excluded mass-

loss rate can be as high as ∼ 10−2 M� yr
−1, thus providing a tighter constraint to the confinement

of the CSM at the derived mass-loss rates.

8 Shock-Breakout Analysis

We begin by considering the relevant timescales for the early observations. The little to no evolu-

tion of the recombination lines (Fig. 2) suggests a timescale of > 4 hr (see above). In the proposed

SBO scenario, the breakout burst ionises the material above the progenitor’s edge, which later

produces recombination lines. A specific timescale for the recombination lines can be attributed

to the longest timescale among the duration of the ionisation burst — the recombination time or

the light-travel timescales. Considering that for the deduced densities, the recombination time is

of order minutes2, and that the ionisation burst timescale is usually shorter than the light-travel

time in a spherically symmetric explosion, we attribute the recombination lines timescale to the

light-travel time of an extended shell.
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However, in such a case the continuum flux probably has a different origin than the recom-

bination lines, such as coming from inside the stellar edge where the SBO occurs. If both the

continuum flux and the recombination lines are to originate at the extended shell, either the emis-

sion is produced by a stellar SBO and is then “smeared” by the light-travel time of an extended

shell, or the SBO is inside the extended shell itself. The problem with the first option is that the

total energy released in the burst is dictated by the stellar radius, but the burst timescale is deter-

mined by the extended shell radius, and the observed flux is lower compared to a stellar SBO. The

observed flux is too high to consider such an option. The problem with the second option is that

for the SBO to occur inside the extended shell, the shell must be optically thick (with an optical

depth > 30), but the line-scattering wings imply an optical depth of only 2–3.

We used our multigroup radiation-hydrodynamics code (Szabo, Sapir, & Waxman, in prep.)

to simulate the continuum spectral emission generated by SBOs from simple spherical stellar en-

velopes and from envelopes surrounded by optically thick steady mass-loss wind. For the latter,

we tested both truncated and untruncated winds and found that for parameters of the order deduced

from observations of iPTF 13dqy, there is persistent X-ray emission starting several hours (and up

to one day) after SBO, owing to the interaction between the post-breakout collisionless shock and

the CSM within which it propagates. This X-ray emission is not completely reprocessed by the

ionised hydrogen of the CSM and we find that a luminosity of ∼ 1042–1043 erg s−1 should be de-

tected by the Swift-XRT, had this been the case. The full spectral analysis implies that this event

cannot have been an SBO from within an optically thick (τ >∼ 30) shell of steady mass-loss wind,

regardless of its outward extension from the stellar surface (as long as it is sufficiently optically
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thick).

For completeness, we applied the same code to SBOs from a simple spherical stellar envelope

(i.e., without CSM at all) and followed them to the late spherical expansion phase. The continuum

emission spectra from 6–10 hr after explosion is best fit by a model of a 10M� RSG envelope with

breakout shock velocity of 0.1c and a stellar radius of 1000R�. The calculated models consider

only fully ionised hydrogen, so the above quoted values should be considered as upper limits (cf.

the RW11 model, which includes ionisation of He and C/O envelopes). It is therefore plausible that

the continuum emission originates from the SBO at the stellar surface, while the spectral emission

lines come from an optically thin (τ ≈ a few) CSM shell ionised by the SBO flash. However,

a full model, integrating SBO, cooling, and radiative transfer, as well as the possible effects of

asphericity, may be required to fully recover the physics from the available extensive observations.

Data Availability Statement The photometry and spectra of iPTF 13dqy (SN 2013fs) presented

in this study are available from WISeREP32: https://wiserep.weizmann.ac.il.
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Supplementary Figure 1 Discovery of iPTF 13dqy in the nearby galaxy NGC 7610 (d =

50.95Mpc), at α = 23h19m44.70s, δ = +10◦11′04.4′′ (J2000.0). Top: Palomar 48-inch

sequence of the new discovery image from 2013 Oct. 06.24, a reference image (a coadd

of pre-explosion images), and the subtraction image. Bottom: The colour SDSS image.

The SN is located in a blue, star-forming area (the red point sources in the vicinity are

foreground stars), which is apparently a part of one of the major arms of the spiral host.
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Supplementary Figure 2 Composite Gaussian and Lorentzian fits to the narrow and

broad components of the Hα line in the Keck-I/LRIS 1200 lines mm−1 spectrum obtained

∼ 10.3hr after explosion. The FWHM of the narrow Gaussian fit is∼ 2.35 Å, corresponding

to a wind velocity of vwind ≈ 100 km s−1. The instrumental resolution is around this velocity

(LRIS manual, and verified from night-sky lines), so the line should be regarded as barely

resolved, and the velocity estimate should be taken as an approximate close upper limit.

The FWHM of the underlying broad wings, which we relate to electron scattering, is ∼

25 Å. The inset displays separate Lorentzian and Gaussian fits to the two components,

focusing on the possible asymmetry of the line profile, especially a potential lack of flux

on the red side.
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Supplementary Figure 3 Evolution of the expansion velocity of the SN ejecta for se-

lected lines, between days 10 and 57 after explosion. The derived expansion veloci-

ties (and the uncertainties) were obtained by fitting a parabola to the minima of the P-

Cygni absorption features. The Hα and Hβ lines evolve from velocities around 10,000

to ∼ 7000 km s−1 during this time interval, whereas the velocity of the Fe II λ5169 line,

visible from day 22 onward, decreases from around 6000 to <∼ 4000 km s−1 by day 57.

Overplotted with filled black markers are the expansion velocities (for the three lines: Hα,

Hβ, and an average of Fe II lines) of the standard Type II-P SN 2004et at days 30 and 50,
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as presented by ref. 19. The obtained trend and values of the expansion velocities are in

broad agreement with typical SNe II-P17, 18.
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Supplementary Figure 4 Evolution of the estimated BB temperature and radius over

the first 60 d after explosion, based on the multiband photometry measurements (Fig. 1).

The first BB temperature estimate was obtained via careful extrapolation of the UVOT

UVM2 and P60 g+ i light curves back to the first P48 (detection) point (see inset of Fig. 1

and text for details). The early-time BB temperature estimates, within the first half day after

explosion, are also in agreement with our temperature estimates from the modeling of the
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early Keck spectra (Fig. 4), showing the highly ionised emission lines at temperatures

>∼ 50 kK.
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Supplementary Figure 5 Bolometric luminosity estimates over the first 60 d after explo-

sion. The shaded region and the solid black line (a running mean of the region) denote

bolometric luminosity estimates based on the multiband photometry (Fig. 1) according to

three methods used to calculate the total flux from the SED: interpolation, order-4 poly-

nomial fit, and BB fits. The top end of the shaded region can be regarded as our best

lower limit on the real bolometric luminosity, based on the photometric observations. The

red triangles denote a (more conservative) lower limit on the bolometric luminosity ob-

tained from our spectra (Fig. 2, Fig. 3), beginning with the early set of 4 Keck spectra at
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<∼ 10hr after explosion and ending with our latest spectrum at 57.2 days. The blue trian-

gles show the luminosity as obtained by our best BB temperature and radius estimates

(Fig. 4), L = 4πR2σT 4; the luminosity in the first point, at ∼ 3.8hr after explosion, exceeds

1044 erg s−1.
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Supplementary Figure 6 Emission-line flux evolution during the first week after explo-

sion. A 3σ uncertainty estimate based on the scatter is also plotted. Note the general

shape of the Hα, Hβ, and He II emission-line flux curves, increasing and declining dur-

ing the first ∼ 2d, whereas the highly ionised oxygen lines disappear completely (quickly

falling to the background scatter) well within the first day after explosion.
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Supplementary Figure 7 Line-forming regions (top and bottom panels) and ionisation

structure (middle) of the 53 kK model, fitting the 6 hr spectrum. The quantity ξ is related

to the equivalent width of the line (following ref. 65) as EW =
∫∞
Rin

ξ(r)d(log r). The bottom

panel shows a close-up view of the very inner region, aroundRin (colour coding is identical
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to the top panel.) Radial profiles of the electron optical depth and electron temperatures

are shown in the top panel.
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Supplementary Figure 8 Multicolour fits of RW1124 models to the early-time photome-

try. The uncertainties have been scaled such that the minimal χ2 per degree of freedom

equals 1 (and the original relative errors in between measurements are maintained). See
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ref. 25, presenting R-band fits of RW11 for a large sample of SNe II from the PTF and

iPTF surveys.

Supplementary Figure 9 Analysis of our multicolour UVOIR early-time data using the

methods of ref. 24 constrains the progenitor radius and explosion energy per unit mass.

1, 2, 3σ contours are plotted, as derived from χ2 fits to all the data (see ref. 25 for details).
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UTC Obs-Date Obs-Time MJD Phasea Telescope/Instrument Observer/Reducer

2013-10-06 09:10:36 56571.3824 6.2 hr Keck-I/LRIS D. Perley / D. Perley

2013-10-06 10:00:46 56571.4172 7.2 hr Keck-I/LRIS D. Perley / D. Perley

2013-10-06 11:39:05 56571.4855 8.9 hr Keck-I/LRIS D. Perley / D. Perley

2013-10-06 13:04:19 56571.5447 10.1 hr Keck-I/LRIS D. Perley / D. Perley

2013-10-06 13:13:49 56571.5513 10.3 hr Keck-I/LRIS (Hi-Res) D. Perley / D. Perley

2013-10-07 00:02:18 56572.0016 21.1 hr NOT/ALFOSC N. E. Groeneboom / F. Taddia

2013-10-07 12:06:39 56572.5046 1.4 d FTS/FLOYDS D. Sand / S. Valenti

2013-10-08 00:21:53 56573.0152 1.9 d NOT/ALFOSC N. E. Groeneboom / F. Taddia

2013-10-08 04:00:46 56573.1672 2.0 d P200/DBSP Y. Cao / Y. Cao

2013-10-08 06:34:07 56573.2737 2.1 d Keck-II/DEIMOS K. Clubb, M. Graham / P. Kelly

2013-10-11 04:48:12 56576.2001 5.1 d Keck-II/DEIMOS S. Tang / Y. Cao

2013-10-11 09:19:19 56576.3884 5.3 d FTS/FLOYDS D. Sand / I. Arcavi, S. Valenti

2013-10-14 21:05:02 56579.8785 8.8 d WHT/ISIS WHT service / K. Maguire

2013-10-17 01:10:33 56582.0497 10.9 d NOT/ALFOSC A. A. Djupvik / F. Taddia

2013-10-26 08:06:13 56591.3377 20.2 d Lick-3 m/Kast I. Shivvers, J. C. Mauerhan / S. B. Cenko

2013-10-28 12:05:01 56593.5035 22.4 d FTS/FLOYDS S. Valenti / S. Valenti

2013-11-02 04:59:51 56598.2082 27.1 d P200/DBSP A. Waszczak / P. Vreeswijk

2013-11-06 09:36:49 56602.4006 31.3 d FTS/FLOYDS S. Valenti / S. Valenti

2013-11-07 04:25:03 56603.1841 32.0 d APO/DIS M. Kasliwal / Y. Cao

2013-11-18 10:12:19 56614.4252 43.3 d FTS/FLOYDS S. Valenti / S. Valenti

2013-11-26 04:50:56 56622.2020 51.1 d P200/DBSP A. Waszczak / O. Yaron

2013-12-02 08:15:32 56628.3441 57.2 d Keck-I/LRIS Y. Cao, D. Perley / D. Perley

Supplementary Table 1 Log of Spectroscopy. Additional meta-data and the full set of spectra are pub-
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licly available through WISeREP (http://wiserep.weizmann.ac.il). Notes: aHours/days with respect to the

estimated explosion time (at MJD0 = 56571.12).
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