3,575 research outputs found
The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model
Copyright @ 2012 Elsevier. The article can be accessed from the link below.This article has been made available through the Brunel Open Access Publishing Fund.Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions.This study is funded under European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 242193/EFACTS. This article is made available through the Brunel Open Access Publishing Fund
Cyclin D 1‐induced proliferation is independent of beta‐catenin in H ead and N eck C ancer
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106775/1/odi12124.pd
Modeling the quantum evolution of the universe through classical matter
It is well known that the canonical quantization of the
Friedmann-Lema\^itre-Robertson-Walker (FLRW) filled with a perfect fluid leads
to nonsingular universes which, for later times, behave as their classical
counterpart. This means that the expectation value of the scale factor
never vanishes and, as , we recover the classical expression for
the scale factor. In this paper, we show that such universes can be reproduced
by classical cosmology given that the universe is filled with an exotic matter.
In the case of a perfect fluid, we find an implicit equation of state (EoS). We
then show that this single fluid with an implict EoS is equivalent to two
non-interacting fluids, one of them representing stiff matter with negative
energy density. In the case of two non-interacting scalar fields, one of them
of the phantom type, we find their potential energy. In both cases we find that
quantum mechanics changes completely the configuration of matter for small
values of time, by adding a fluid or a scalar field with negative energy
density. As time passes, the density of negative energy decreases and we
recover the ordinary content of the classical universe. The more the initial
wave function of the universe is concentrated around the classical big bang
singularity, the more it is necessary to add negative energy, since this type
of energy will be responsible for the removal of the classical singularity.Comment: updated version as accepted by Gen. Relativ. Gravi
GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology
Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion mutation within intron 1 of the FXN gene. However, the origins of the GAA repeat expansion, its unstable dynamics within different cells and tissues, and its effects on frataxin expression are not yet completely understood. Therefore, we have chosen to generate representative FRDA mouse models by using the human FXN GAA repeat expansion itself as the genetically modified mutation. We have previously reported the establishment of two lines of human FXN YAC transgenic mice that contain unstable GAA repeat expansions within the appropriate genomic context. We now describe the generation of FRDA mouse models by crossbreeding of both lines of human FXN YAC transgenic mice with heterozygous Fxn knockout mice. The resultant FRDA mice that express only human-derived frataxin show comparatively reduced levels of frataxin mRNA and protein expression, decreased aconitase activity, and oxidative stress, leading to progressive neurodegenerative and cardiac pathological phenotypes. Coordination deficits are present, as measured by accelerating rotarod analysis, together with a progressive decrease in locomotor activity and increase in weight. Large vacuoles are detected within neurons of the dorsal root ganglia (DRG), predominantly within the lumbar regions in 6-month-old mice, but spreading to the cervical regions after 1 year of age. Secondary demyelination of large axons is also detected within the lumbar roots of older mice. Lipofuscin deposition is increased in both DRG neurons and cardiomyocytes, and iron deposition is detected in cardiomyocytes after 1 year of age. These mice represent the first GAA repeat expansion-based FRDA mouse models that exhibit progressive FRDA-like pathology and thus will be of use in testing potential therapeutic strategies, particularly GAA repeat-based strategies. (c) 2006 Elsevier Inc. All rights reserved
Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders
Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface
Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations
Abstract
Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline
Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model
The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2
TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry.
Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration
ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd.
Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to
10 lmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this
accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that
this exposure resulted in a significant accumulation of copper and zinc but not of the other elements
measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied.
Exposed to 30 lmol/l of the element, manganese showed the highest inhibition and copper the lowest on
cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual
competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant
increase in the accumulation of zinc. There was a significant decrease in manganese from 5 lmol
Cd/l exposure, and no variation was observed with copper.
Abbreviation: AAS – Atomic absorption spectrometry; CRM– Certified reference material; PBS – Phosphate
buffered saline without calcium and magnesium; DMEM – Dubelcco’s modified Eagle’s medium
HER2 testing in breast cancer: Opportunities and challenges
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
The Impact of Shame, Self-Criticism and Social Rank on Eating Behaviours in Overweight and Obese Women Participating in a Weight Management Programme
Recent research has suggested that obesity is a stigmatised condition. Concerns with personal inferiority (social rank), shame and self-criticism may impact on weight management behaviours. The current study examined associations between social comparison (shame, self-criticism), negative affect and eating behaviours in women attending a community based weight management programme focused on behaviour change. 2,236 participants of the programme completed an online survey using measures of shame, self-criticism, social comparison, and weight-related affect, which were adapted to specifically address eating behaviour, weight and body shape perceptions. Correlation analyses showed that shame, self-criticism and social comparison were associated with negative affect. All of these variables were related to eating regulation and weight control (p < 0.001). Path analysis revealed that the association of shame, hated-self, and low self-reassurance on disinhibition and susceptibility to hunger was fully mediated by weight-related negative affect, even when controlling for the effect of depressive symptoms (p < 0.050 to p < 0.010). In addition, feelings of inadequacy and unfavourable social comparisons were associated with higher disinhibition and susceptibility to hunger, partially mediated through weight-related negative affect (p = 0.001). These variables were negatively associated with extent of weight loss during programme attendance prior to the survey, while self-reassurance and positive social comparisons were positively associated with the extent of weight loss prior to the survey (p < .050). Shame, self-criticism, and perceptions of inferiority may play a significant role in self-regulation of eating behaviour in overweight people trying to manage their weight
- …
