89 research outputs found

    Preparation of New Polyols Based on Cis-1,4-Polyisoprene by Using 1,3-Dipolar Cycloaddition

    Get PDF
    This research focuses on synthesis and modification of polyol precursors derived from cis-1,4-polyisoprene (PI). These new polyol precursors can be converted to high value-added polyurethane (PU). The epoxidized hydroxytelechelic PI (EHTPI) prepared by chemical modification from PI was used as starting material for polyol synthesis. 1,3-Dipolar cycloaddition between a terminal alkyne and an azide has rapidly become the most popular click reaction. We applied this reaction to couple azide-functionalized PI and alkyne-functionalized sugar for preparing polyols. For azide functionalization, 1-methyl epoxidized cyclohexane was used as a model molecule, and various conditions for epoxide ring opening of 1-methyl epoxidized cyclohexane and EHTPI were investigated. The cycloaddition of alkyne and azide was carried out in the presence of sodium ascorbate and copper sulfate. The polyol precursors obtained might be used to prepare biodegradable polyol PU

    Front. Plant. Sci.

    Get PDF
    Plasmodesmata (PD) pores connect neighbouring plant cells and enable direct transport across the cell wall. Understanding the molecular composition of these structures is essential to address their formation and later dynamic regulation. Here we provide a biochemical characterisation of the cell wall co-purified with primary PD of Arabidopsis thaliana cell cultures. To achieve this result we combined subcellular fractionation, polysaccharide analyses and enzymatic fingerprinting approaches. Relative to the rest of the cell wall, specific patterns were observed in the PD fraction. Most xyloglucans, although possibly not abundant as a group, were fucosylated. Homogalacturonans displayed short methylated stretches while rhamnogalacturonan I species were remarkably abundant. Ful l rhamnogalacturonan II forms, highly methyl-acetylated, were also present. We additionally showed that these domains, compared to the broad wall, are less affected by wall modifying activities during a time interval of days. Overall, the protocol and the data presented here open new opportunities for the study of wall polysaccharides associated with PD.Ecole Universitaire de Recherche de Sciences des Plantes de Paris-SaclayThe function of membrane tethering in plant intercellular communicatio

    Adaptive responses of animals to climate change are most likely insufficient

    Get PDF
    Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species

    Adaptive responses of animals to climate change are most likely insufficient

    Get PDF
    Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.Peer reviewe

    Identification of Li battery electrolyte degradation products through direct synthesis and characterization of alkyl carbonate salts

    No full text
    Aiming toward the identification of carbonate-based electrolyte degradation species formed during high-temperature cycling of Li/M-O cells, we have embarked in the synthesis and characterization of lithium-based alkyl carbonates. Through the reaction of commercial or synthesized lithium alkoxides with carbon dioxide, we succeeded in preparing lithium methyl, ethyl, propyl mono carbonates, and therefore we have extended our work to the synthesis of lithium ethandiol-bis carbonate. Their analytical characterization ( 1H and 13C nuclear magnetic resonance, electrospray ionization-mass spectroscopy, Fourier transform: infrared/attenuated total reflection) is described. Furthermore, to our surprise, we managed to demonstrate that these well-known alkyl carbonates show some electrochemical reactivity toward Li. © 2005 The Electrochemical Society. All rights reserved

    Identification of Li-based electrolyte degradation products through DEI and ESI high-resolution mass spectrometry

    No full text
    The nature and composition of gel-like organic films forming during the cycling of Li-based cells functioning through a conversion reaction process were investigated. Besides infrared techniques, both desorption electron impact (DEI) and electrospray ionization (ESI) mass spectrometry were used to study the large amounts of films obtained after extended cycling at 55°C. We give direct evidence for the formation, depending on the type of electrolytes used that differ by the nature of either the Li-based salt (LiPF6, LiCF3SO3) or solvents (dimethyl carbonate, propylene carbonate, ethylene carbonate, and their mixtures), of either phosphate-ending PEG-(polyethylene glycol) type chains, PEG chains (CH2-CH 2-O)n, or polypropylene glycol chains (CH(CH 3)-CH2-O)n with n values ranging from 1 to 9, and also trimethyl phosphate. The reaction schemes involving either electrochemical or chemical processes are proposed to describe the formation of such species. © 2004 The Electrochemical Society. All rights reserved

    Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries

    No full text
    In the continuing challenge to find new routes to improve the performance of commercial lithium ion batteries cycling in alkyl carbonate-based electrolyte solutions, original designs, and new electrode materials are under active worldwide investigation. Our group has focused on the electrochemical behavior of a new generation of nanocomposite electrodes showing improved capacities (up to 3 times the capacity of conventional electrode materials). However, moving down to "nanometric-scale" active materials leads to a significant increase in electrolyte degradation, compared to that taking place within commercial batteries. Postmortem electrolyte studies on experimental coin cells were conducted to understand the degradation mechanisms. Structural analysis of the organic degradation products were investigated using a combination of complementary high-resolution mass spectrometry techniques: desorption under electron impact, electrospray ionization, and gas chromatography coupled to a mass spectrometer equipped with electron impact and chemical ionization ion sources. Numerous organic degradation products such as ethylene oxide oligomers (with methyl, hydroxyl, phosphate, and methyl carbonate endings) have been characterized. In light of our findings, possible chemical or electrochemical pathways are proposed to account for their formation. A thorough knowledge of these degradation mechanisms will enable us to propose new electrolyte formulations to optimize nanocomposite-based lithium ion battery performance. © 2006 American Chemical Society
    corecore