3 research outputs found

    Brane Induced Gravity, its Ghost and the Cosmological Constant Problem

    Full text link
    "Brane Induced Gravity" is regarded as a promising framework for addressing the cosmological constant problem, but it also suffers from a ghost instability for parameter values that make it phenomenologically viable. We carry out a detailed analysis of codimension > 2 models employing gauge invariant variables in a flat background approximation. It is argued that using instead a curved background sourced by the brane would not resolve the ghost issue, unless a very specific condition is satisfied (if satisfiable at all). As for other properties of the model, from an explicit analysis of the 4-dimensional graviton propagator we extract a mass, a decay width and a momentum dependent modification of the gravitational coupling for the spin 2 mode. In the flat space approximation, the mass of the problematic spin 0 ghost is instrumental in filtering out a brane cosmological constant. The mass replaces a background curvature that would have had the same function. The optical theorem is used to demonstrate the suppression of graviton leakage into the uncompactified bulk. Then, we derive the 4-dimensional effective action for gravity and show that general covariance is spontaneously broken by the bulk-brane setup. This provides a natural realization of the gravitational Higgs mechanism. We also show that the addition of extrinsic curvature dependent terms has no bearing on linearized brane gravity.Comment: v2: LaTeX, JHEP style, 41 pages, 3 eps figures. Partly rewritten to improve presentation, results unchanged, published versio

    Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

    Get PDF
    The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology
    corecore