151 research outputs found

    A novel binary biofilm model for the study of the development of antimicrobial tolerance in Pseudomonas aeruginosa PAO1 and Escherichia coli

    Get PDF
    The primary aim of this study was to investigate the effect of species interactions on biofilm formation and the investigation of the susceptibility of component species towards BIT in binary biofilms (Ps. aeruginosa PAO1and E. coli ATCC 10000). The Sorbarod biofilm model (Hodgson et al. 1995) was used to establish monospecies and binary species biofilms under conditions of growth rate control by the utilisation of a modified Chemically Defined Medium (MCDM). This MCDM was designed to allow the growth of both species (Ps. aeruginosa PAO1and E. coli ATCC 10000) in the same biofilm, without allowing either to have a growth rate advantage over the other. The results from these experiments suggest that it is possible to use this model to investigate the results of environmental exposure of bacteria to sub-MICs of biocides and develop an understanding of their subsequent tolerance and resistance characteristics. These results indicate that it is possible to establish a binary biofilm in chemically defined media, under growth rate control and to induce tolerance in dual species (binary) biofilms towards BIT. The mechanism of tolerance in binary biofilms towards this biocide was a gradual adaptive process, dependent upon the presence of biocide. This study elucidates a novel technique for the establishment, control and operation of binary biofilms. It has yielded information regarding the use of passage approaches to develop antimicrobials tolerance in both monospecies and binary species biofilms of medically important bacteria

    Effect of Bovine Somatotropin on Neutrophil Functions and Clinical Symptoms During Streptococcus uberis Mastitis

    Get PDF
    The effect of recombinant bovine somatotropin (bST) on the chemiluminescence, diapedesis, and expression of adhesion receptors (CD11a, CD11b, CD18) of isolated polymorphonuclear leukocytes was studied. The plasma concentrations of insulin-like growth factor-I (IGF-I), bST, cortisol, and alpha-lactalbumin were also monitored. In addition, general and local clinical symptoms and the differentiation of circulating leukocytes were also studied during experimentally induced Streptococcus uberis mastitis in cows. Ten cows were infected with 500 cfu of S. uberis O140J in both left quarters. Five cows were subcutaneously treated with 500 mg of recombinant bST 7 d before and after infection, and 5 control cows received the excipient. General (fever, tachycardia, inappetance, and depression) and local symptoms (swelling, pain, firmness, and flecks in milk) were more acute, severe, and longer-lasting in control cows. Treatment with bST had no effect on chemiluminescence and diapedesis of circulating polymorphonuclear leukocytes and no effect on the expression of adhesion receptors. Recombinant bST induced significantly higher IGF-I and bST concentrations in plasma. The leukopenia observed after infection was less pronounced in the bST-treated cows, and the number of circulating band neutrophils and metamyelocytes was significantly lower in the treated group. The concentration of cortisol did not differ between both groups, but the blood concentration of alpha-lactalbumin significantly increased in both groups from 6 d after infection. These results showed that treatment with recombinant bST improves animal welfare by protecting the cows from severe local and general clinical symptoms during subsequent S. uberis mastitis, but that it has no effect on chemiluminescence, diapedesis, and the expression of adhesion receptors of circulating polymorphonuclear leukocytes

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    Coupled stalagmite – Alluvial fan response to the 8.2 ka event and early Holocene palaeoclimate change in Greece

    Get PDF
    We explore the expression of early Holocene climatic change in the terrestrial Mediterranean of southern Greece. A regional palaeoclimate record from stable isotope and trace element geochemical proxies in an early Holocene (~12.4 ka to 6.7 ka) stalagmite is compared to the timing of palaeosol (entisol) development on an early Holocene alluvial fan located <100 km from the stalagmite site. Radiocarbon dated entisol development records fan abandonment surfaces, which can be coupled to the stalagmite climate signal. Variations in δ13C best record the main elements of palaeoclimatic change, more negative values indicating soil carbon input to karst groundwater under wetter conditions. The wettest conditions begin around 10.3 ka, coincident with the start of sapropel 1 deposition in the eastern Mediterranean. The widely documented northern hemisphere ‘8.2 ka event’ of cooler and drier conditions has a muted δ18O climatic signal in common with other stalagmite climate records from the wider Mediterranean. However, less negative δ13C values do record a period of episodic dryness between ~8.8 and ending at 8.2 ka. Wetter conditions re-established after 8.1 ka to the end of the record. The oldest alluvial fan entisols were developing by ~9.5 ka, and a prominent rubified entisol developed ~8.3 to 8.4 ka, indicating pedogenesis within dating error of the 8.2 ka event. The speleothem record of episodic dryness between ~8.8 and 8.2 ka, combined with other regional proxies, is consistent with the notion that precipitation patterns in Greece may have changed from predominantly winter frontal to summer convective during this period. Palaeosol formation on the alluvial fan may have been an allocyclic response to this change. It is plausible that fan-channel incision, driven by temporary development of a ‘flashier’ summer rainfall regime, isolated large areas of the fan surface allowing onset of prolonged pedogenesis there

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Longitudinal lung function assessment of patients hospitalised with COVID-19 using 1H and 129Xe lung MRI

    Get PDF
    BACKGROUND: Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION: Do patients hospitalised due to COVID-19 without evidence of architectural distortion on structural imaging show longitudinal improvements in lung function measured using 1H and 129Xe magnetic resonance imaging between 6-52 weeks after hospitalisation? STUDY DESIGN AND METHODS: Patients who were hospitalised due to COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25 and 51 weeks after hospital admission in a prospective cohort study between 11/2020 and 02/2022. Imaging protocol: 1H ultra-short echo time, contrast enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion weighted and 129Xe spectroscopic imaging of gas exchange. RESULTS: 9 patients were recruited (57±14 [median±interquartile range] years, 6/9 male). Patients underwent MRI at 6 (N=9), 12 (N=9), 25 (N=6) and 51 (N=8) weeks after hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients demonstrated impaired 129Xe gas transfer (red blood cell to membrane fraction) but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6-25 week period. At 12 weeks, all patients with lung perfusion data (N=6) showed an increase in both pulmonary blood volume and flow when compared to 6 weeks, though this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared to 6-week examinations, however 129Xe gas transfer remained abnormally low at weeks 12, 25 and 51. INTERPRETATION: 129Xe gas transfer was impaired up to one year after hospitalisation in patients who were hospitalised due to COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation wa normal at 52 weeks
    corecore