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Abstract 

We explore the expression of early Holocene climatic change in the terrestrial Mediterranean 

of southern Greece. A regional palaeoclimate record from stable isotope and trace element 

geochemical proxies in an early Holocene (~12.4 ka to 6.7 ka) stalagmite is compared to the 

timing of palaeosol (entisol) development on an early Holocene alluvial fan located less than 

100 km from the stalagmite site. Radiocarbon dated entisol development records fan 

abandonment surfaces, which can be coupled to the stalagmite climate signal. Variations in 

δ
13

C best record the main elements of palaeoclimatic change, more negative values indicating 

soil carbon input to karst groundwater under wetter conditions. The wettest conditions begin 

around 10.3 ka, coincident with the start of sapropel 1 deposition in the eastern 

Mediterranean. The widely documented northern hemisphere ‘8.2 ka event’ of cooler and 

drier conditions has a muted δ
18

O climatic signal in common with other stalagmite climate 

records from the wider Mediterranean. However, less negative δ
13

C values do record a period 

of episodic dryness between ~8.8 and ending at 8.2 ka. Wetter conditions re-established after 
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8.1 ka to the end of the record. The oldest alluvial fan entisols were developing by ~9.5 ka, 

and a prominent rubified entisol developed ~8.3 to 8.4 ka, indicating pedogenesis within 

dating error of the 8.2 ka event. The speleothem record of episodic dryness between ~8.8 and 

8.2 ka, combined with other regional proxies, is consistent with the notion that precipitation 

patterns in Greece may have changed from predominantly winter frontal to summer 

convective during this period.  Palaeosol formation on the alluvial fan may have been an 

allocyclic response to this change. It is plausible that fan-channel incision, driven by 

temporary development of a ‘flashier’ summer rainfall regime, isolated large areas of the fan 

surface allowing onset of prolonged pedogenesis there. 

Keywords: alluvial fan, stalagmite, paleoclimate, Holocene, 8.2 ka event, Greece 

 

1. Introduction 

It is a consensus view today that ~8.47 ± 0.3 ka, glacial lakes Agassiz and Ojibway 

released meltwater into the north Atlantic causing surface water freshening (Barber et al. 

1999; Clarke et al. 2004; Alley and Ágústsdóttir 2005). The freshening caused slowdown of 

meridional North Atlantic deep-water flow from c. 8.4 ka, with rapid deceleration and sea-

surface temperature reductions at ~8.3 ka (Ellison et al. 2006). The event (“8.2 ka event”) 

resulted in near global (Cheng et al., 2009) climatic cooling typically accompanied by drier, 

windier conditions that increased susceptibility to forest fire (Alley et al. 1997). The 

meltwater pulse that stimulated the 8.2 ka event is the last of up to 17 similar, albeit mostly 

smaller, pulses identified in the early Holocene (Teller and Leverington 2004). In addition to 

the 8.2 ka event, at least two more of these melt water pulses are thought to have produced 

cool and dry climatic anomalies: one at ~9.2 ka (Fleitmann et al., 2008) and the other at ~11.4 

ka (the Preboreal Oscillation; Fisher et al., 2002). While all three climatic anomalies register 

clearly in Greenland ice cores (Vinther et al., 2006) the 8.2 ka event has the best-documented 

terrestrial climatic expression. 

In this study we were interested in understanding the expression of these early Holocene 

climatic anomalies in the terrestrial Mediterranean, specifically in Greece. We set out to do 

this by constructing a palaeoclimate record from an early Holocene stalagmite (Figs 1 and 2). 

Stalagmites are well suited to this approach as they can be precisely dated using U series, 

while petrographic fabrics, stable isotope and trace element geochemical proxies can record 

environmental and climatic variability (e.g. Fairchild and Baker 2012). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

Despite near-global climatic cooling caused by the “8.2 ka event” its expression is 

surprisingly patchy, muted or absent in speleothems from wider Mediterranean regions (e.g. 

Frumkin et al., 1994; Bar Matthews et al. 1999; Zanchetta et al., 2007; Verheyden et al. 

2008). It is thus important, where possible, to construct regionally specific, well-resolved 

speleothem records that provide the best opportunity to attribute climatic effects on regional 

precipitation, runoff and sediment yields, particularly seasonal distribution, magnitude and 

source.  

 

We also had an unusual opportunity to compare the local well-dated stalagmite 

palaeoclimate record with the sedimentary response of an early Holocene alluvial fan located 

at Schinos, less than 100 km from the stalagmite site (Fig. 1). Radiocarbon chronology for the 

fan, allowed, perhaps for the first time, quantitative analysis of centennial-scale fan response 

to climatic drivers, taking such studies beyond the coarser temporal and climatic-change 

scales seen, for example at the Pleistocene-Holocene transition where dated lake shorelines 

intersect the distal parts of alluvial fans  (e.g. Harvey et al., 1999; Garcia and Stokes 2006). 

Our studied fan displays a number of thin palaeosols in its lower part: the thickest and 

stratigraphically youngest palaeosol having an age of 7620±40 radiocarbon years (Leeder et 

al., 2002), showing that the fan sediments overlap in age with the early Holocene stalagmite 

record. Palaeosols in alluvial fan sequences record abandoned surfaces where sedimentation 

has temporarily ceased (e.g. Talbot and Williams 1979; Ritter et al., 1995; Reheis et al., 

1996; Stokes et al., 2007; Ventra and Nichols 2014; Antinao et al., 2016). Such abandonment 

may arise from autocyclic lobe switching when a currently active channel cuts across the fan 

topographic gradient to jump sideways (avulse) during flood discharge. The new locus of 

deposition robs sediment supply to the formerly active fan segment (e.g. Ventra and Nichols 

2014), allowing pedogenesis on the abandoned surface. Repeated avulsions and lobe 

abandonment produce a patchwork fan stratigraphic architecture comprising local soil 

horizons intercalated within alluvium. Our null hypothesis was thus that the fan palaeosols 

are ‘autocyclic’ being randomly distributed in time and space and not related to climatic 

drivers as recorded in the stalagmite. 

If however, the age of the alluvial fan palaeosols corresponds with climatic events in the 

speleothem the null hypothesis is challenged. Allocyclic forcing of alluvial fan sedimentation 

is largely non-random, driven by the sensitivity of the entire catchment-fan system to the 
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balance between predominant deposition and the non-deposition. This sensitivity often arises 

through changing hydrology-influenced variables such as seasonal water balance, magnitude 

and rate of surface and sediment runoff and the density and type of vegetation (Leeder et al. 

1998). The commonest signal of allocyclic change is from deposition to erosion, caused by 

fan channel incision. This promotes development of soil horizons on sediment-starved 

interfluves left stranded above the flooding levels of the incised and eroding channels. 

Prolonged incision is likely to be driven by climatic changes on centennial or longer 

timescales and as such, palaeosol development should align with palaeoclimatic events 

recorded in the stalagmite. Of course, changing gradients caused by (random) tectonic 

activity and changing base level may also be important, although these are not necessarily a 

major factor on Quaternary timescales (Ritter et al., 1995).  

Our early Holocene stalagmite palaeoclimate record comes from Limnon Cave (37°57' 

37.8'' N 22°08' 24.9''E), 2 km north of Kastria village in the Peloponnese, some 90 km SE of 

Patras (Figs 1 and 2). The climate record spans the first five thousand years of the Early 

Holocene, broadly between 12 - 7 ka, significantly older than any published speleothem 

records (e.g. Finné et al., 2015; Weiberg et al., 2016) from the Peloponnese. The stalagmite 

age thus  directly corresponds to dated palaeosol development (Leeder et al., 2002) on the 

Schinos alluvial fan located in western Attica, some 80 km to the ENE (38°02' 53.7'' N 23°02' 

54.0'' E; Fig. 1). Most important, the time-period of our study precedes any significant impact 

from human activity on vegetation in the region, which began around 7.0 ka (Weiberg et al., 

2016). 

 

2. Early Holocene climate (Greece) 

Central Asian Holocene climate between 10-6 ka was generally warm and humid, linked 

to onset of the early Holocene (11.5 ka) solar radiation maximum (Cheng et al., 2012). In the 

Eastern Mediterranean, warm and humid conditions (Peyron et al. 2011; Cheng et al., 2015) 

coincide with deposition of sapropel 1 (S1; 10.5 ka to 6.1 ka; Grant et al., 2016) a precession 

minima phenomenon driven by wetter climate, increased river runoff, nutrification and near -

surface stratification (e.g. Mercone et al., 2001; Meyers and Arnaboldi 2008; Rohling et al., 

2015). On land, the warm and humid conditions favoured growth of ‘climatic optimum’ 

Mediterranean mixed forests. The best-resolved terrestrial palaeoclimate data in Greece 

comes from Tenaghi Philippon (Peyron et al. 2011) in the north of the country.  Here, pollen-
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based climate reconstructions show a strongly seasonal (stronger than today) moist period 

from 9.5-7.8 ka characterised by wet winters and dry summers. 

 

These optimum conditions were interrupted at 9.2 and 8.2 ka (Section 1). The 8.2 ka 

northern hemisphere climate event is best-documented, dated to 8271 ± 113 years BP 

(Vinther et al., 2006) based on electrical conductivity measurements in the Greenland GISP2 

ice core (see also Thomas et al., 2007). Atmospheric teleconnection from the cooled and 

freshened N Atlantic surface waters caused expansion of the northern hemisphere polar 

winter vorticity field (Siberian High; see Renssen et al. 2002; Rohling et al. 2002; Vellinga 

and Wood 2002). Effects of pan-hemispheric cooling ~8.2 ka (Alley and Ágústsdóttir 2005) 

included reduced growth rates of Central European oaks (Spurk et al., 2002) and changes to 

deciduous tree populations (notably Corylus; Tinner and Lotter, 2001). Sediment cores in the 

Aegean Sea record the 8.2 ka event superimposed on a broader same-sign climatic anomaly 

between 8.8-7.8 ka (Rohling and Pälike 2005; Marino et al. 2009). During this period, 

Aegean Sea S1 deposition was interrupted as cold winter outbursts from the Siberian High 

led to surface cooling, renewed deep-water formation and temporary reversion to ‘normal’ 

oxygenated hemipelagic deposition (Kotthoff et al. 2008a). Onset of this interruption began at 

8.5 ka according to Triantaphyllou et al. (2009). The 8.2 ka climatic anomaly interrupted the 

otherwise moist conditions and reversed the seasonality (dry winters and wet summers) in 

pollen records at Tenaghi Philippon (Peyron et al. 2011). However, further south in the 

Peloponnese, geochemical records in Lake Stymphalia show no clear evidence of 

environmental perturbation at 8.2 ka (Heymann et al., 2013). From 7.8-5.0 ka, the Tenaghi 

Philippon terrestrial record suggests lower overall precipitation and reduced seasonality 

(Peyron et al. 2011) but there are no supporting records from southern Greece. 

 

3. Environmental setting 

3.1 Limnon Cave stalagmite 

Limnon Cave is hosted in Cretaceous Limestones of Mount Amolinitsa (summit at 

1420 m). This montane cave is about 2 km long and developed along a NW trending fault. 

The natural cave entrance is 820 m above sea level, but in 1981, an artificial entrance was 

opened for tourist access that began in 1990 (Fig. 2). The first prominent stalactite mass is 

found 80 m from the natural entrance and the cave is actively wet with cave floor lake 

development 280 m from the natural entrance. There are thirteen cave floor lakes of various 

sizes in the following 520 m (Iliopouou-Georgudaki and Economidou 1991). Epikarst 
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thickness increases more or less linearly from the natural entrance to a maximum of 540 m 

below the summit of Mount Amolinitsa. Present day terra-rossa soil cover above the cave is 

thin and patchy, mostly hosted in bedrock fissures. Vegetation is sparse Mediterranean 

sclerophyllous scrub characterized by Quercus coccifera and Phlomes fruticosa (Iliopouou-

Georgudaki and Economidou 1991). 

Today, mean cave air temperature varies between 12.5 °C (winter) and 14.5 °C 

(summer) with relative humidity between 89% (winter) and 96% (summer; Iliopouou-

Georgudaki and Economidou 1991). In summer, air flows in through the entrances and exits 

via roof fissures with flow velocities of 0.12-0.69 m s-1 (0.5-2.0 m from the cave floor; 

Iliopouou-Georgudaki and Economidou 1991). This flow reverses in winter. All of these 

measured environmental parameters are clearly affected by the artificial entrance to some 

degree and it is reasonable to assume that all of them were either lower (temperature range; 

air flow) or higher (relative humidity) under natural conditions. 

The closest data-rich IAEA and WMO weather stations are both coastal, at Patras 

(2000-2014) and Athens (combined Hellinkon Airport (1960-1976) and Pendeli (2001-2014) 

records). Modern rainfall distribution is strongly seasonal with >70% of precipitation falling 

in autumn and winter months and <20 mm rainfall in summer months. Stalagmite extension 

and isotopic compositions should thus respond largely to autumn and winter rainfall. In the 

Limnon region annual rainfall is around 1200 mm per year (Flocas and Giles 1991) with an 

annual rainfall relative intensity of 3.3 mm/h (between 1962 and 2002), among the highest 

values in Greece (Kambezidis et al. 2010). Between 65 and 70 % of regional rainfall in the 

Peloponnese originates from frontal depressions in the winter (Flocas and Giles 1991), such 

that a summer convective signal, although present (Kambezidis et al. 2010), is not likely to be 

much represented in stalagmite growth today. 

 

3.2.Schinos alluvial fans 

Opportunities for observing early Holocene sedimentary successions are rare over much 

of the Aegean hinterland due to younger sedimentary cover. This holds along the majority of 

the Corinth rift basin where the entry points of major drainages are marked by depositional 

Holocene coastlines featuring prograding and aggrading fans. However, the southern active-

faulted margin to the Alkyonides Gulf in the easternmost rift is undergoing coastal erosion 

and is bordered by an incised, hanging-wall coastal bajada. This range front bajada comprises 
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coalesced sea-cliffed alluvial fans, talus cones, coastal lagoons, marshlands and beach/barrier 

spit and beach shorelines (Fig. 3; Leeder et al. 1991, 1998, 2002). The alluvial fans are km-

scale, coarse grained, stream-flow dominated, fed from drainage catchments located in 

uplifting footwall-mountains of the Gerania Range with Mesozoic basement comprising 

limestone, chert, and ophiolitic serpentinites. It is likely that a bajada system has been present 

here for c. 2 Ma since initiation of the active coastal faults (Leeder et al. 2002). The youngest 

lowstand bajada was drowned around 7 ka at the Holocene highstand and up to 150 m of 

coastal retreat may have occurred since. Sea-cliffing of the Holocene alluvial fans began after 

the 7 ka highstand, amplified by ~ 1-2 mm yr
-1

 tectonic subsidence, the fans being in the 

hangingwall of the active Schinos Fault (Jackson et al., 1982; Collier et al., 1998). 

This study concentrates on the early Holocene part of Fan F of Leeder et al. (1998, 2002) 

where the sea cliff and a roadside quarry allow unusually good access to the lower fan 

stratigraphy. Fan F has its apex at about 200 m elevation and a basal perimeter of 

approximately 1.3 km. A single gorge, cut through the limestone range front, fed the fan from 

a catchment approximately 1 km long and up to 0.6 km wide (700 m maximum elevation). 

The fan surface is densely wooded except parts of the western lower slopes, which have been 

cleared for house building. We estimate Fan F to have a present day volume of 4.76 x 10
7
 m

3
, 

and using a sediment bulk density of 1520 kg m
-3

, a sedimentary mass of ~7.24 x 10
10

 kg. 

Fan F currently shows no evidence of active channel sedimentation; this reflects exhaustion 

of readily erodible ophiolite, combined with exposure of underlying limestone bedrock in the 

upper catchment, inducing subsurface (karst) drainage. The youngest ages, presented in 

Section 5.2, suggest that the eastern part of Fan F may have been largely inactive since the 

mid Holocene. 

Fan F is located in the hangingwall of both the Schinos and Pisia Faults (Jackson et al., 

1982; Collier et al., 1998), and the footwall of the offshore West Alkyonides Fault. However, 

late Quaternary displacements were dominated by subsidence in the hanging walls of the 

onshore faults (Leeder et al., 2002; Mechernich et al., 2018). The effects of individual 

earthquakes on fan morphology are well constrained by research on Fan D, 2 km to the E of 

our study site.  In 1981 a series of three earthquakes (February 24, 1981, 6.7 Ms; February 25, 

1981, 6.4 Ms; March 4, 1981, 6.4 Ms) struck the Alkyonides Basin (Jackson et al., 1982). On 

Fan D, surface displacements of between 0.4-1.3 m on the Schinos Fault were recorded, 

probably formed by one or both of the first two 1981 events (Collier et al., 1998). A 

maximum recurrence interval of 330 years for such surface breaks has been calculated based 
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on dated historical events (Collier et al., 1998). The presence of a 5 m high scarp on Fan G 

(~2.5 km SW of our study site) led Collier et al. (1998) to conclude that rates of displacement 

may be comparable along much of the length of the Schinos Fault, since at least the mid-

Holocene. These well-characterised alluvial sediment-hosted fault scarps have surprisingly 

little effect on overall fan morphology (particularly in the lower fans): in active channel areas 

they are rapidly degraded/overridden by flood sedimentation events. In short, there is no 

evidence that individual fault surface scarps have much discernible influence on wider fan 

sedimentation patterns downslope.  

 

4. Materials and methods 

 

4.1. Limnon Cave 

Stalagmite KTR-2, was collected about 600 m from the natural entrance (Fig. 2) 

where epikarst thickness is about 200 m. Cave water samples (Table S1) were collected at the 

time of sampling and in addition two drip sites (1 and 2) were subsequently monitored in 

December 2006 and January 2007, February, March and April 2009, and February and March 

2010. Two modern calcite-water pairs were sampled: (1) a small active stalagmite (KTR-1, 

400 m from the natural entrance (Fig. 2) growing beneath drip 1 and (2), a nearby straw 

stalactite (drip 2). The tip of a stalactite drape at 550 m and calcite precipitating on the steel 

walkway at 500 m was also sampled (Table 1). In addition, water samples from three springs 

were collected, one 200 m from the natural cave entrance, a second 2 km N of the cave (972 

m elevation) and a third at Kalavryta, 17 km NNW of the cave (795 m elevation). 

U-Series dating was carried out at the NERC Isotope Geosciences Laboratory, 

Keyworth, UK (full method in Supplementary Information) using 200-250 mg samples from 

drilled locations (Fig. 2). Uranium and thorium isotope data were obtained on a Thermo 

Neptune Plus MC-ICP-MS using an Aridus II desolvating nebulizer and standard-sample 

bracketing and instrument procedures modified from Andersen et al. (2008) and Hiess et al. 

(2012). Hydride and tailing corrections were on the order of 2 ppm of the adjacent peaks. 

Total 
238

U and 
232

Th blanks were <10 pg and <4 pg and were negligible relative to the sample 

U and Th. Standard accuracy (within 0.1%) and reproducibility (within 0.2%) of 
234

U/
238

U 

was monitored by replicate analyses of Harwell uraninite HU-1. Replicate measurements of 

the reference solution showed 
229

Th/
230

Th accuracy and reproducibility to be ± 0.2-0.3% for 

230
Th ion beams > 5000 cps. Data reduction incorporated the revised average 

235
U/

238
U ratio 

of 137.818 (Hiess et al., 2012) and U-Th ages were calculated using the decay constants of 
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Cheng et al. (2013). Holocene U/Th ages have errors < ± 82 years (Table 2) and corrected 

ages are BP (before 1950 AD). 

Petrography on KTR-2 was done using multiple overlapping thin-sections and 

samples for stable isotope analysis were drilled at 1 mm spacing through the axial part of the 

stalagmite (127 samples; hereafter low-resolution). In addition, a 33 mm section between 33 

and 66 mm, was micro-milled at high-resolution in an attempt to capture details of any 8.2 ka 

signal. Samples were drilled in trenches ~250 µm wide and ~100 µm deep, normal to the 

growth axis. Each sample ‘sweep’ abutted the preceding one such that sample trenches were 

quasi continuous along the growth axis. This sampling achieved decadal resolution based on 

the age model. Isotopic analyses (University of East Anglia Stable Isotope Laboratory) were 

made on 75±5 µg samples, run alongside 75±5 μg internal standards of UEACMST 

(University of East Anglia Carrara Marble Standard; δ
18

O -2.05 ‰VPDB; δ
13

C 1.99 

‰VPDB), reacted with 105% (ρ = 1.92 gml-3) phosphoric acid (H3PO4) at 90°C in an on-

line common acid bath. The evolved CO2 was purified and analysed for δ
18

O and δ
13

C using 

a Europa SIRA II dual inlet isotope ratio mass spectrometer. The data are calibrated to 

international reference scales (VPDB and VSMOW) using IAEA Certified Reference 

Material NBS-19 (δ
18

O -2.20 ‰VPDB; δ
13

C 1.95 ‰VPDB).Repeat analysis of both 

international and internal reference materials gave 1σ errors of less than ±0.1‰ for both δ
18

O 

and δ
13

C.  

 

A tablet immediately adjacent to the micromilled section was used for laser ablation 

ICPMS trace element transect, using a spot size of 30 µm and increment between spots of 

200 µm (method in Royle et al., 2015). Sr and Mg data were highly reproducible with RSDs 

of 2.8% and 3.8% respectively. Exact matching of micro-milled samples and LA-ICPMS 

spots was not possible due to the poor optics of the laser microscope and the destructive style 

of drilling, but sample widths of both techniques were close enough to ensure that decadal-

scale sampling coherence was achieved. 

  

4.2. Alluvial fan palaeosols 

The alluvial fan studies focus on the palaeosols and associated sediments in the basal 10 

m of the Schinos bajada alluvial fan F of Leeder et al. (1998, 2002); field colours were 

recorded with reference to Munsell colour chips. Samples for radiocarbon analysis were 

taken from the upper few centimetres of the palaeosols, excavated >5 cm behind pre-cleaned 
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vertical surface exposures, taking great care to avoid modern root material. Bulk sediment 

was processed by Beta Analytic and the AMS dated material is the organic fraction remaining 

after sieving the sediment to <180 μm to remove any roots or macrofossils and then acid 

washed to remove carbonate. The organic component in these oxic sediments is assumed to 

be finely-disseminated inert micro-charcoal, accumulated as a concentrate from wildfires. 

Radiocarbon dates have errors < ± 40 years and were converted to calibrated age ranges BP 

(before 1950 AD) using INTCAL 13 (Reimer et al. 2013; Table 2). 

 

5. Results 

 

5.1. Limnon Cave stalagmite 

 

KTR-2 is a twin stalagmite; we sampled the left hand stalagmite shown in Figure 2 

and nine U-series dates were used to constrain ages (Table 2). The two lower dates bracket a 

detritus-rich horizon ~2 mm in width, which lies at or just below the Pleistocene-Holocene 

boundary (top at 127 mm). The data show evidence of slight detrital contamination (most 

230
Th/

232
Th being in the range 100-310) and ages have been corrected assuming a 

contaminant of bulk Earth composition with a Th/U weight ratio of 3.8 (Taylor and 

McLennan 1995) and 
238

U, 
234

U and 
230

Th in secular equilibrium. Age corrections are 

generally ≤100 years, although ~160 years for KTR2-2 and KTR2-3. The dates are in 

stratigraphic order except KTR2-5 and KTR2-6 with an age differential of 180 years, and 

stratigraphically inverted beyond 2σ errors: there are no obvious geochemical grounds to 

prefer one date over the other (Table 2). KTR2-5 (8641 ± 43 years BP) has a lower 
234

U/
238

U 

ratio than all other samples, possibly indicating uranium isotope mobility, but KTR2-6 (8821 

± 50 years BP) may have experienced detrital contamination by sediment with lower Th/U 

ratio than bulk Earth leading to higher 
230

Th and increased age. The speleothem age 

modelling program StalAge (Scholz and Hoffmann, 2011), rejected sample KTR2-5; 

however, this solution requires an implausible 10.2 mm of stalagmite extension in 3 years 

between 61.82 to 72.0 mm. On this basis we think it likely that KTR2-5 is the more reliable 

age and it was incorporated into the StalAge model used for subsequent data interpretation 

(Fig. 4). 

An age model that includes KTR2-5 but excludes KTR2-6 modifies ages by <50 years 

relative to the opposite selection, except between 8.5 ka and 9.0 ka where ages differ by up to 

270 years at 8.9 ka (Fig. S1). However, the magnitude of the variation between the two model 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

chronologies is insufficient to have a significant impact on the palaeoclimatic reconstructions 

discussed in this paper. The dates shows that speleothem growth above the basal detritus-rich 

horizon began ~12.4 ka and continued until ~6.7 ka. There is only one likely minor hiatus (at 

96 mm), indicating largely continuous extension. Stalagmite extension rates began ~1.1 cm 

ka
-1

 between 12.4 ka and 8.9 ka increasing to ~8.4 cm ka
-1

 between 8.9 ka and ~8.5 ka before 

falling to ~2.9 cm ka
-1

 from ~8.5 ka to 6.7 ka (Fig. 4). 

Petrography shows that KTR-2 is wholly calcitic mostly of columnar open (Co) fabric 

(Frisia 2015) with patchy horizons of columnar microcrystalline (Cm) fabrics (Frisia 2015) 

seen below 60 mm, particularly at 115 and 96 mm (Figs 5a, b). Cm fabrics are in places 

accompanied by irregular calcite crystals that grew laterally toward the speleothem flank, e.g. 

at 31 mm (Fig. 5c) and marked by a sub-mm black horizon in hand specimen. The horizon at 

96 mm contains the only evidence of clay-rich detritus as a layer that truncates lateral crystal 

growth (Fig. 5d). The top 2 mm of the stalagmite shows evidence of post-growth corrosion.  

The most instructive isotopic and trace element data are shown in Figures 6-8, with 

additional data and figures available in the Supplementary Information. The δ
18

O record (Fig. 

6a) begins with values around 6.5‰ with low variability until ~8.8 ka, after which δ
18

O 

generally increases to around 6.2‰. Superimposed on this are ~1‰ negative excursions at 

8.5 and 8.0 ka, interspersed with a positive excursion centred on 8.2 ka and most clearly seen 

in the micro-milled data (Fig. 7a). Another marked positive shift occurs at 7.0 ka (~1.4‰) 

prior to termination of growth. δ
13

C fluctuates around -5.5‰ before 10.3 ka and mostly 

between -6.0 to -8.0‰ thereafter (Fig. 6b). However, variability in δ
13

C is high throughout, 

and a period of less negative values between -5.5 and -6.0‰, is evident between ~8.8 and 8.1 

ka (Figs 6b and 7b): even in this period there is a negative excursion at ~8.5 ka. Excursions to 

less negative δ
13

C are clear in the micro-milled record at 8.3 ka and between 8.2 and 8.1 ka 

(Fig. 7b), the latter coincident with the highest δ
18

O value. A major positive excursion at the 

end of the record matches that in δ
18

O. 

There is no obvious relationship between variation in high-resolution δ
13

C and any 

trace element (Figs S3-S5). However, the smoothed high-resolution δ
18

O (Fig. S2) shows 

some similarity (within dating error) to variability in molar Mg/Sr (Fig. 8), a parameter where 

variability suggests a mixed control on one or both elements (Tremaine and Froelich 2013) 

through epikarst processes or source effects (Roberts et al.,1999; Fairchild et al., 2000), 

including residence times and degassing / prior precipitation (see Brasier et al., 2010). There 

is also weak relationship between Mg/Ca (and Sr/Ca) vs δ
18

O profile shape, particularly the 
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first 200 years of the record (Fig. 8) and again from ~8.3 ka to the end of the record at 6.7 ka.  

Mg/Ca generally increases from ~8.4 ka to ~8.1 ka but with a marked reversal near the 8.2 ka 

peak in δ
18

O (6.2 ‰):  Mg/Sr (and Sr/Ca) show a substantial increase at this point (Fig. 8).  

 

5.2. Alluvial fan palaeosols 

The sea-cliffed fans have vertical faces up to 9 m high that expose crudely-stratified, dm-

m thick, lenticular-bedded, open framework gravels that are grain-supported, comprising 

subangular to subrounded serpentinite/limestone clasts (Fig. 9a and b). The lenticular-bedded 

gravel units are in places accentuated by intercalated pale-coloured (2.5Y 8/2) fine silt of 

serpentinite composition (checked by XRD), probably reworked by water flow downslope 

since the silt has intercalated sand and granule stringers and is often cut out laterally by dm-

scale erosional scours hosting coarser sediment (Fig. 9b). Intercalated palaeosols (Fig. 9a and 

b) range from centimetric- to decimetric-thick, brownish to red (see Munsell colours below) 

iron-oxide stained horizons that partition the alluvial sediments into successive units (Fig. 

10). The INTCAL 13 calibrated ages of the palaeosols are shown in Table 3 and on Figures 

9-11. Palaeosol dates are mean residence time (MRT) ages, the average age of the organic 

carbon component in the sample. MRT ages are typically older than the age of the latest soil 

development and can suffer from reworking of older material into the soil (Collier et al., 

1998). We thus consider the palaeosol ages as maxima and accept that the real age of the soils 

could be younger. Likewise, MRT ages on silt layers will suffer incorporation of older 

material into the sediment during deposition and are thus likely to be older than the 

depositional age. This said, the overall stratigraphic consistency of the ages suggest they are 

representative. 

The oldest lower fan sediments crop out at modern sea-level in a 4.4 m high sea cliff 

(38°03' 10.1'' N 23°03' 08.6''; Figs 9 and 10). The oldest sediments here are streamflow 

alluvium with a thin, irregular, mottled pale brown - brown (2.5Y 8/2 and 7.5YR 5/4) 

coloured palaeosol, dated to 9.3 - 9.5 ka (sample JEA140916-3; Table 3). The 2.95 m thick 

gravel unit overlying this basal palaeosol is particularly rich in limestone clasts, its upper part 

punctuated by an erosion surface of prominent clasts with low matrix content. Above this is a 

prominent, laterally continuous palaeosol, 30 cm thick, that weathers light red (10R 6/8) in its 

upper part. The sample from this palaeosol gave an age of 9.5-9.7 ka (sample JEA140916-5; 

Figs 9-10). The age is thus apparently the same or older than the underlying palaeosol, the 
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degree of inversion depending on the calibration age range chosen, and may be indicative of 

inaccuracies with MRT ages. 

This prominent palaeosol is sharply overlain by a silty lens up to 20 cm thick which 

returned  an age of ~7.8 to 7.9 ka (sample JEA140916-4; Table 3 and Figs 9 and 10). Both 

the silts and the palaeosol are locally cut-out by erosional scour surfaces. The silts are in turn 

overlain by 60 cm of pebbly gravels topped by a weakly developed, 5 cm thick palaeosol (not 

dated) overlain sharply by another 10 cm thick silt layer.  This silty layer is also cut out 

locally by gutter-like erosional scours (Fig. 9b). The upper cliff section comprises c. 5 m of 

streamflow gravels (Fig. 10) with a thin, discontinuous, yellowish red (5YR 5/6) palaeosol at 

the top which returned an age of 4.9 -5.3 ka (sample JEA140916-6; Table 3). This palaeosol 

underlies a gravel lens that thickens eastward. 

An east-west quarry section at about 7 m elevation (38°03' 05.7'' N 23°03' 15.8''; Figs 10 

and 11), 250 m SE of the seacliff section features a striking 0.3 m thick laterally-continuous, 

iron-oxide stained (red; 10R 5/8) palaeosol which caps a >2 m thickness (base not seen) of 

streamflow alluvium (Figs 10 and 11a). It is itself overlain by c. 6 m of serpentinite-rich 

alluvial gravels. The palaeosol here comprises light-red (10R 6/8) surface coats to 

serpentinite clasts and clay/silt-matrix in its upper 10 cm, with rubification decreasing 

downwards to more red-brown (10R 4/6 to 2.5YR 4/6) hues. There is no evidence of organic 

horizons or rootlets. Excepting the clay/silt development and colour changes with depth, there 

is no evidence of marked horizonation in this (or any of the other) palaeosols; the topmost 

few cm were sampled (MRL109914-5; Table 3 and Fig. 11b) returning an age of 8.3 to 8.4 

ka. Overlying streamflow gravels have a sharp and sometimes erosive contact with the 

palaeosol (Fig. 11b). Sample MRL090911-4A (Table 3) was from a pale coloured (2.5Y 8/2), 

poorly-sorted sandy-granuley coarse silt in an irregular lens-shaped unit, in the base of the 

post-palaeosol alluvium, 10 cm above the top of the 8.3 to 8.4 ka palaeosol (Fig.11b). This 

sample returned an age of 5.0-5.3 ka (Table 3). The silt layer is overlain by 60 cm of gravel, 

followed by a second 10 cm thick silty layer, locally cut by erosional scours that in paces also 

cut through the underlying gravels and the palaeosol. 

 

6. Interpretation of results 

 

6.1. Stable isotopes background 
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Isotopic compositions of IAEA Patras precipitation augmented with OIPC v3.1 

interpolated precipitation values for the Limnon Cave region (www.waterisotopes.org; 

Bowen and Wilkinson 2002; Bowen and Revenaugh 2003) mostly plot on, or just above, the 

GMWL (Fig. S6) while modern cave drip and pool waters, and nearby spring waters (Table 

S1) plot midway between the GMWL and the EMMWL, with similar gradient. Winter 

precipitation in the Peloponnese is typically ~4 ‰ more negative in δ
18

O than summer 

precipitation (Fig. S6; the difference can be ~6 ‰ when including isotopically enriched 

Patras/Athens August values).  Weak correlation between modern Patras air temperature and 

rainfall δ
18

O, but strong anti-correlation (r
2
 = 0.80) between mean monthly rainfall amount 

and mean rainfall δ
18

O (Fig. S7) suggests that the amount effect is largely responsible for the 

negative winter precipitation δ
18

O, as noted in other Mediterranean region palaeoclimate 

records (Bard et al., 2002, Bar-Matthews et al. 2003, Drysdale et al., 2009, Finné et al., 

2014). The modern cave water δ
18

O overlap the four most negative (December-March) OIPC, 

which overall suggests a mixed Atlantic and Mediterranean moisture source, with recharge 

predominantly during autumn and winter. The two spring waters sampled >2 km from the 

cave have more negative δ
18

O than the cave waters, caused by orographic effects of recharge 

at higher altitude; they do however, help define the local meteoric line and its identical slope 

to the EMMWL (Fig. S6). 

Limnon cave water samples have a mean δ
18

O of  -7.50±0.12‰ VSMOW. Excluding 

the slightly enriched drip 1 sample of January 2007 (-7.1‰), the average is -7.52±0.06‰ 

VSMOW (n=17). Considerable isotopic homogeneity is therefore evident, suggesting 

effective groundwater mixing in the epikarst. 

The extent to which oxygen isotopic equilibrium is maintained during precipitation of 

speleothem calcite from parent seepage water has typically been evaluated using the 

equilibrium fractionation equation of Kim and O’Neil (1997) derived from laboratory 

precipitation experiments (but see Daëron et al., 2019). The calculated temperatures can then 

be compared with measured cave temperatures. However, extensive investigation of 

empirical speleothem and cave water oxygen isotope data (Tremaine et al., 2011) suggests 

that natural carbonate-water isotopic systems may not be well-reproduced by laboratory 

experiments. The best-fit “cave calcite” line through a plot of the available global 

speleothem-water δ
18

O data is described by the equation:  

1000Inα = 16.1 (10
3
T

-1
) -24.6          (1) 
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suggesting that water-calcite equilibrium fractionation factors are likely higher in natural 

cave systems (see also Daëron et al., 2019) than in laboratory experiments,  

Air temperatures at the sample points varied between 12.5- 13.3 ºC (RH 89-90%) in 

winter and 14.2 ºC to 14.5 ºC (RH of 96%) in summer (Iliopouou-Georgudaki and 

Economidou, 1991), and a spot reading during sampling in November 2006 was 14.5 ºC. 

Winter pool water temperatures in this part of the cave are between 12-13 ºC (Iliopouou-

Georgudaki and Economidou, 1991). The mean annual temperature at Tripoli, 50 km SE of 

the cave is 14.1 ºC (1961-1990; altitude 650 masl) and mean annual temperature at Kalavryta 

(10 kms NNW, 731 masl) is 13.6ºC (Pope et al., 2017), the equivalent temperature at the cave 

site (850 masl) being ~12.8ºC. Cave temperatures are thus within ±1.8 ºC of the local annual 

average temperature. Under wet winter – dry summer Mediterranean conditions calcite 

precipitation may occur predominantly in winter and therefore calculated cave temperatures 

of around 12ºC are expected. Calculated temperatures using the Tremaine et al. (2011) 

equation are shown in (Table 1) which also shows the Kim and O’Neil (1997) temperatures 

for comparison. The modern calcite calculated temperatures fall within the expected range 

(12.6ºC and 13.1ºC) excepting the deposit on the metal walkway which appears anomalous 

(see Supplementary Information). These data show that most modern Limnon Cave 

speleothem calcite is forming in near-equilibrium with its winter drip waters. We assume 

these conditions largely held during the early Holocene, and in support of this the 

petrographic fabrics in KTR-2 (Section 6.2) also suggest low degassing efficiency. 

6.2. KTR-2 record 

The columnar open (Co) fabrics seen in most of KTR-2 typically form under constant and 

relatively high drip rate (0.1- 0.3 ml/min; Frisia et al., 2000; Boch et al. 2011) and in a thicker 

water film than columnar compact calcites. Under these conditions, degassing is less efficient 

(Kendall and Broughton 1978; Boch et al. 2011) which discourages complete coalescence of 

crystallites. Co calcites typically form in dripwater with Mg/Ca ratios <0.3 and pH from 7.4 

to 8.0 (Boch et al., 2011), the resulting high HCO3/CO3 ratios promoting vertical linear 

extension. Columnar microcrystalline (Cm) fabrics form under more variable drip rates (30 

ml to <0.1 ml/min; Frisia and Borsato 2010) but most importantly with clear input of 

impurities and organic colloids when compared to Co conditions (Frisia 2015); the highly 

irregular crystal boundaries, typical of Cm fabrics, form where foreign particles induce 

crystal defects (Frisia et al. 2000). In Alpine settings, typically with mixed conifer and 
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deciduous forest cover, combination of low dripwater supersaturation, low degassing and 

increased flushing of colloidal particles appears to occur in autumn (Frisia et al., 2005) and 

suggests that Cm is indicative of  seasonal temperature and rainfall (increase in autumn) 

contrast. Seasonal change in cave ventilation may also be indicated with less efficient 

exchange between cave and atmospheric air occurring when inflow of soil-derived colloidal 

particles is greater (Frisia 2015). 

The association of Cm fabrics with irregular lateral crystal growth toward the stalagmite 

flank in KTR-2, may indicate growth in very thin water films (and thus low drip rates at these 

times), precluding substantial vertical extension.  

Much of the Holocene growth of KTR-2 and its subsequent cessation is coincident with 

the timing of S1 in the Eastern Mediterranean (Section 2) with conditions at this time broadly 

wetter and warmer than the rest of the Holocene. Wetter conditions than present are borne out 

by KTR-2 δ
18

O, which are typically up to 0.5‰ more negative than modern speleothem 

calcite values. KTR-2 δ
13

C values are nearly all less negative (typically by 1.5 – 2.0‰) than 

the mean modern speleothem calcite value of -8.3‰ (Table 1), and this is particularly marked 

in the earliest part of the record until 10.3 ka (Fig. 12). These ‘high’ δ
13

C values suggest less 

input of isotopically negative soil-carbon relative to today, particularly in the period before 

10.3 ka. Cool conditions evident in the Adriatic from 11.0 ka to 10.0 ka (Rohling et al. 1997), 

and as late as ~9.6 ka in the Northern Aegean (Gogou et al. 2007; Fig. 12) may have limited 

soil development, particularly if accompanied by summer aridity (see e.g. Heymann et al., 

2013). Petrographic fabrics between 11.2 ka and 9.4 ka alternated between Co and Cm, 

suggesting short periods of constant drip water supply (Co) giving way to periods of more 

variable drip rate (Cm). KTR-2 Holocene extensions rates were mostly at their lowest during 

this period, ~1.1 cm ka
-1

, until 8.9 ka (Fig. 4) . There is no clear evidence of the Preboreal 

Oscillation climatic anomaly (cold and dry) between 11.4-11.2 ka excepting the possibility 

that it could have contributed to a ‘high’ in δ
13

C (Fig. 12) at this time. 

At ~10.3 ka there is a sharp 3‰ decrease in δ
13

C (to -7.8‰; Fig. 12), heralding a 

period of ~1000 years when δ
13

C remained below -7.0‰ and indicating increased input of 

isotopically negative soil-carbon, not dissimilar to present day conditions. During this same 

1000 years δ
18

O is <-6.7‰, the most sustained period of isotopically light compositions in 

the Holocene record and indicative of increased winter rainfall with an intensified ‘amount 

effect’.  These ‘warm and wet’ indicators that promoted biologically active soils, coincide 
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with the start of S1 (Grant et al., 2016) and the onset of a Holocene Climate Optimum. In this 

interval Cm fabrics underlie a detritus-rich layer at 96 mm, ~9.4 ka (Fig. 5d)  suggesting at 

least one period (~200 years based on layer width) when infiltration was capable of 

transporting soil-derived colloids and particles through conduits. The δ
13

C record suggests 

optimum conditions ended at ~8.8 ka in KTR-2 (Fig. 12) when values increased markedly 

indicating drier conditions.  

 

The early KTR-2 ‘optimum’ is broadly coincident with a number of regional 

terrestrial and marine palaeoclimate indicators. The largest and most rapid increase in early 

Holocene Aegean sea surface temperatures occurred between 10.0 and 9.0 ka (Triantaphyllou 

et al., 2016), combined with pulsed input of terrestrial organics (Gogou et al. 2007) and 

lowering of surface salinity, caused by increased fluvial discharge (Kotthoff et al. 2008b). 

Onset of Aegean and Ionian sapropel formation occurred ~9.8 ka (Gogou et al., 2007; 

Kotthoff et al., 2008b; Geraga et al., 2008) following the period of most negative δ
13

C values 

in KTR-2. At Tenaghi Philippon and Nisi Fen (N. Greece) terrestrial pollen data indicates 

increased winter precipitation and stable winter temperatures between 10.4 ka and 9.5 ka 

(Kottholf et al 2008a), the younger age within error of the ~9.4 ka detritus-rich layer in KTR-

2. There is no convincing expression of a 9.2 ka cold and dry climatic anomaly (Fleitmann et 

al., 2008) in the KTR-2 record. 

Between ~8.8 and 8.2 ka, δ
18

O values are typically around 6.6 to 6.5‰ (Fig. 12) 

while δ
13

C increase to ~ 6.6‰, values broadly similar to those before 10.3 ka, suggesting a 

return to decreased winter rainfall and re-established dryness. These timings correspond to 

regional climatic deterioration (aridity) that began around 8.8 ka (Rohling and Pälike 2005; 

Marino et al. 2009) culminating in the northern hemisphere ‘8.2 ka event’ of cooler and drier 

conditions centred between 8.2 and 8.1 ka (Alley et al. 1997). However, a ~200 year negative 

excursion in both isotopes ~8.5 ka in KTR-2 is a clear exception in this trend, the possible 

significance of which is discussed later.  

High-resolution δ
18

O (micro-milled profile) between 8.6 ka to 8.4 ka decrease to a 

minimum of 7.5‰ between 8.5 and 8.4 ka (Figs 7a and 13) accompanied by negative δ
13

C 

and peaks in Sr, Ba, Na and P content (Fig. S4): stalagmite extension rates were also at their 

highest, ~8.4 cm ka
-1

 sometime between 8.9 ka and 8.5 ka (Fig. 4). The combined 

information suggest significant rainfall infiltration (δ
18

O) that mobilised soil-based lithogenic 
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colloids and soil organic matter (trace element and δ
13

C response). However, from 8.4 ka, 

δ
18

O progressively increases to a maximum of 6.2 ‰ at ~8.2 ka (Figs 7a and 12), while δ
13

C 

shows two more low negative (>-6.0 ‰) excursions ~8.3 ka and ~8.2 ka. These isotopic 

trends are accompanied by increasing Mg/Ca (but with a reversal that matches the timing of 

the ~8.2 ka low negative δ
13

C) and a peak in Mg/Sr ratio ~ 8.2 ka (Fig. 8).  The combined 

data are indicative of increasing dryness (δ
18

O), possibly associated with a change in 

moisture source, and increasing water residence time in the epikarst (δ
13

C, Mg and to a lesser 

extent Sr), possibly accompanied by prior calcite precipitation (PCP). The overall δ
13

C 

response between 8.6 and 8.2 ka is clearly not one of progressive change; instead, it shows 

marked 1‰ fluctuations around a value of -6.0‰, changing to lighter compositions after 8.1 

ka (Fig. 12). The δ
13

C values while thus relatively high and broadly consistent with episodic 

dryness, are mostly not as high as values attained in the period before 10.3 ka (Fig. 6b). This 

suggests aridity was not as marked as in the early Holocene and is supported by development 

of more open columnar calcite (after 9.2 ka) indicating more consistent recharge and steady 

infiltration. KTR-2 extension rates had slowed ~2.9 cm ka
-1

 after 8.5 ka (Fig. 4). Cm fabrics 

are not present after 8.6 ka (Fig. 7a) suggesting drip rate was reasonably constant from this 

time onward.  

 

The developing dryness recorded in KTR-2 between ~8.4 and 8.2 ka (Fig. 7) is 

consistent with growing evidence that the ‘8.2 ka event’ is superimposed on a climatic 

deterioration trend between 8.8 ka to 7.8 ka (Rohling and Pälike 2005). The KTR-2 dryness is 

also consistent with lower resolution chronologies for the onset of water level reduction in 

nearby Lake Stymphalia (Fig. 1; Heymann et al. 2013) and in the southern Balkans and 

Macedonia (lakes Maliq and Dojran; Bordon et al. 2009; Francke et al. 2013). The combined 

‘peak dryness’ indicators in KTR-2, ~8.2 ka, are all within error of the timing of minimum 

tree pollen percentages at Tenaghi Philippon in N Greece (Peyron et al. 2011) and within 

error of lake level low-stand ~8.2 ka at Stymphalia (Fig. 1; Heymann et al. 2013). In marine 

records an increase in Ionian Sea surface salinity occurs around ~8.0 ka (Emeis et al. 2000) 

and disruption of Aegean S1 closest to the Greek coastline occurs between 8.4 and 8.0 ka 

(Kottholf et al. 2008b). 

After 8.1 ka both δ
18

O and δ
13

C become progressively more negative (Fig. 13) and 

Mg/Ca and Mg/Sr ratios decrease (Fig. 8), all consistent with renewed increase in 

precipitation as ‘optimum conditions’ re-established. While the apparently ‘wetter’ δ
18

O 
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signature is short-lived (~400 years until ~7.7 ka) the δ
13

C values, fluctuate between -6 and -

8‰ until ~7.0 ka (Fig. 6b). The δ
13

C response suggests there was usually enough rainfall to 

support vegetation during this period, perhaps because of effective summer rainfall, or if 

temperatures were cool (solar insolation being in decline at this time), because of reduced 

effective evapotranspiration. There is evidence of high rainfall between 7.9 and 7.4 ka in 

Corchia Cave, Italy and Soreq Cave in Israel (Zanchetta et al. 2007) which supports this 

interpretation, even if the KTR-2 response was apparently more episodic.  A dark layer in 

KTR-2 hand specimen at ~7.8 ka coincides with lateral crystal growth fabrics and a peak in 

δ
13

C. The crystal fabrics may indicate growth in a thin water film, but not in this case 

accompanied by either a marked hiatus or Cm fabrics; a constant drip rate is inferred. By 7.2 

ka, both δ
18

O and δ
13

C show large positive excursions indicating the onset of renewed aridity 

followed by cessation of stalagmite growth perhaps indicating complete dryness in the 

epikarst. 

The increased aridity, marked by increased δ
13

C at 7.2 ka, corresponds with the end of 

S1 deposition (Fig. 13) at ~7.0 to 7.1 ka in the N Aegean, Ionian and Adriatic Seas (Kottholf 

et al. 2008b; Emeis et al. 2000, Geraga et al. 2008; Rohling et al. 1997). Drying at this time is 

also manifest in reduced precipitation at the Alkyas Lagoon, Zakynthos (Avramidis et al. 

2013) and in Lake Accesa, Italy (Peyron et al. 2011). This ‘end S1’ timing also broadly 

matches changes in hydrological  conditions recorded in speleothems from Corchia Cave, 

Italy (Zanchetta et al. 2007), and Soreq Cave in Israel (Bar Matthews et al. 1999). 

 

6.3. Alluvial fan record 

The gravel-dominated parts of the sedimentary sequence were mostly active during 

episodes of high winter runoff, followed by inactivity during the dry summers, probably with 

extensive deciduous oak woodland on the upper fan and fan margins as indicated by 

palynological data from the offshore Corinthian Gulf (Collier et al. 2000). 

The abundance of Fe oxides in the thin palaeosols (Fig. 11) reflects the ultrabasic 

substrate upon which they developed, rich in Fe-bearing olivine and orthopyroxene. These 

provide high pH soil microenvironments conducive to oxidative weathering, clay diagenesis 

and Fe
3+

 accumulation, probably from ferrihydrite precursors (see Schwertmann et al. 2004). 

The lack of horizonation implies these are entisols, i.e. weakly developed mineral soils with 

an ochric epipedon (Brady and Weil 2002). Comparison with active Fan D, 2 km to the E of 
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our study site (Collier et al., 1988), suggests they represent lower fan surfaces, largely devoid 

of vegetation, where exposure and oxidation of the clastic substrate led to limited silt and clay 

production.   The similarity of silt layer spacings and erosion features above the most 

prominent 30 cm thick palaeosol at both locations allow correlation between the sea cliff and 

quarry sections (Fig. 10). If correctly correlated, the different ages determined for the same 

palaeosol require explanation. We suggest the palaeosol developed slowly, episodically and 

possibly diachronously over a long period of time (the ages allow ~9.5 to 8.3 ka) with 

millimetric differences in sample depth below top, having a profound effect on age. This 

suggests that the younger age in the quarry section (8.3-8.4 ka) marks the final phase, and 

culmination of pedogenesis. 

The basal palaeosol in the sea cliff section, with an age ~9.3 ka, is separated from the 

overlying palaeosol by 'normal' alluviation, and the bracketing ages (despite possible 

inversion of <400 years) suggest almost instantaneous flood deposition of this unit. The ages 

are too young to register the Preboreal Oscillation but they broadly confirm that periodic 

pedogenesis was ongoing by ~9.5 ka following ~700 years of wet conditions as recorded in 

KTR-2 (Fig. 12). The 9.3 ka palaeosol age is within error of the ~9.2 ka climatic anomaly 

(Fleitmann et al., 2008) although this event has no signature in the KTR-2 record. 

The KTR-2 record shows that drying had certainly re-established by 8.8 ka, and the 30 

cm thick, light red entisol in the quarry section (Fig. 11) fixes culmination of this (probably 

prolonged) pedogenesis at 8.3 to 8.4 ka, within error of the 8.2 ka climatic event. KTR-2 δ
13

C 

values between 5.5 and 6.0 ‰ at this time indicate dry conditions with entisol 

development recording pedogenesis following abandonment of this part of the active fan. 

Fine-grained alluvial fan sedimentation had resumed ~7.8-7.9 ka in the seacliff section 

(Figs 9 and 10), coincident with indications of wetter climate (from δ
13

C in KTR-2) 

particularly ~8.1-8.0 ka, but also episodically between 7.8 and 7.2 ka, the latter overlapping 

wetter climate indications ~7.5 ka in nearby lake Stymphalia (Heymann et al., 2103). 

Resumption of alluviation in the quarry section occurred later, the 8.3 to 8.4 ka age palaeosol 

not overwhelmed by ‘normal’ streamflow alluvium for a further ~3000 years, when 

aggradation allowed spillover onto the reactivated fan surface. A total of around 6 m 

accumulated over an unconstrained time to the present-day inactive fan surface (Fig. 10). 

Lower down the fan, the youngest centimetric-scale upper palaeosol seen in the sea cliff 

developed around 5.0 ka, in response to a channel/lobe switch that subsequently reversed and 
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deposited the youngest prism of sediment on the easternmost flanks of the fan. This last 

depositional event was foreclosed as marine erosion began the slow retreat of the fan’s 

eastern coastal cliff line promoting channel incision and abandonment of many of the lower 

fan lobes. The palaeosol age of 5.0 ka is too young for comparison with the KTR-2 record but 

consistent with aridity indicators ~5.0 ka in the Lake Stymphalia record  (Heymann et al., 

2013). In central Italy and the Levant, Zanchetta et al. (2014) detect a speleothem isotopic 

excursion argued to reflect relatively drier winters including a short sub-centennial period 

around 5.2 ka. In Lebanon, Cheng et al. (2015) detect strong Bond event aridity at 5.1 ka. 

 

7. 8.2 ka regional climate effects 

While the KTR-2 record contains petrographic and isotopic evidence of developing if 

episodic dryness between 8.8 and 8.2 ka, wetter conditions between 8.5 and 8.4 ka are also 

evident in both the isotopic and elemental proxies. Indications of more humid summers 

between 8.7 and 8.5 ka in nearby Lake Stymphalia (Heymann et al., 2013) might implicate a 

change in the timing of recharge, from winter to summer, around 8.5 ka. The combined 

information  indicates that developing dryness approaching 8.2 ka was not as marked as it 

had been in the early Holocene, an interpretation corroborated by the moderate KTR-2 

extension rates (~2.9 cm ka
-1

; Fig. 4) approaching 8.2 ka, relative to the slower early 

Holocene rates (~1.1 cm ka
-1

; Fig. 4). Moreover, between 8.5 and 8.4 ka, decrease in δ
13

C 

could be indicating that above-cave vegetation growth was reinvigorated, perhaps by 

increased convective summer precipitation coinciding with the growing season. 

The stalagmite data is thus consistent with Aegean hinterland vegetation records that 

indicate a fundamental change in hydrological conditions from wet to drier winters. 

Specifically, deciduous tree pollen percentage in Aegean marine cores declines from 8.4 ka 

with sharp reduction at 8.2 ka, especially noticeable in the reduced proportion of evergreen 

oaks (Fig. 13) that are sensitive to winter drought (Kottoff et al. 2008a, 2008b; Pross et al. 

2009). Analogy with present day Mediterranean climate dynamics suggests this was caused 

by blocking of Atlantic fronts that intrude westward and trigger internal winter Mediterranean 

cyclogenesis (Meteorological Office 1962; Trigo et al. 2000, 2002). However, microfaunal 

and palynological data from both terrestrial northern Greece (Peyron et al. 2011) and the SE 

Aegean (Triantaphyllou et al. 2009) also indicate a parallel increase in summer precipitation. 

This may implicate an 8.2 ka-driven (cold N Atlantic) intensification of the Siberian high 
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pressure, blocking Atlantic fronts, a weakened summer monsoon (Wang et al., 2005; Cheng 

et al., 2009) and reduced subsidence over the eastern Mediterranean promoting vigorous 

summer cyclogenesis (cf. Trigo et al., 2002). Whatever the precise mechanism the 

precipitation regime of the eastern Mediterranean changed its pattern from winter frontal to 

summer convective over less than 1000 years. 

If palaeosol development on Fan F was randomly distributed in time and space, then it is 

simply coincidence that the MRT age for the culmination of the thickest entisol aligns with 

climatic aridity at 8.2 ka. Alternatively, and perhaps more likely, the development of 

palaeosols was driven by climatic events. If this is accepted, there are two scenarios that may 

account for palaeosol development: 

1. The whole of the eastern lower fan essentially dried up, the cessation of sedimentation 

allowing entisol development. 

2. A change in precipitation regime from winter frontal to summer convective promoted 

‘flashier’ summer rainfall regimes, perhaps with exceptional floods that caused rapid 

fan-channel incision. The incision isolated large areas of surface fan and the onset of 

prolonged pedogenesis there. Reduced rains from diminished winter cyclogenesis 

may have promoted winter drought, slowing cool season pedogenesis and reducing 

evergreen Quercus canopies further, enhancing summer runoff and sediment erosion. 

Given that the KTR-2 record suggests episodic dryness and Aegean hinterland vegetation 

records suggest episodic convective summer rainfall in the period between 8.8 and 8.1 ka, we 

prefer scenario 2 as a likely driver for entisol development at 8.2 ka. Allocyclic channel 

incision on the lower fan is likely to have been caused mainly by flash flooding before the sea 

level highstand (~7 ka), whereas after the highstand, sea cliffing of the fan toe would have 

also contributed to incision. The main weakness of this interpretation is that so far, exposures 

in the lower fan have not been extensive enough to reveal the incised channel network 

required in this scenario. 

 

8. Conclusions 

 

We have outlined a case study from southern Greece, that for the first time, links regional 

Holocene palaeoclimate change from a montane speleothem record with the sedimentary 

response of a range front, semi-arid alluvial fan using dated sedimentary records. 
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1. Variations in δ
13

C in a stalagmite from southern Greece best record the main elements 

of regional early Holocene palaeoclimate in southern Greece that are consistent with 

other regional proxies. The δ
13

C values, reflecting soil carbon input to karst 

groundwater, indicate dry conditions before 10.3 ka, followed by a wetter interval 

starting around 10.3 ka, but interrupted by dryer conditions between 8.8 and 8.2 ka. 

Wetter conditions re-established after 8.1 ka to the end of the record. Of the three 

largest early Holocene cool and dry climatic anomalies only the 8.2 ka event has 

expression in the stalagmite stable isotope data.  

2. While developing, if episodic, dryness is clearly evident in the stalagmite record 

between 8.8 and 8.2 ka, the markedly cool and dry conditions predicted for the N 

Hemisphere at 8.2 ka, are not particularly strongly developed, in common with a 

number of other stalagmite climate records from the wider Mediterranean regions. 

3. Palaeosols on alluvial Fan F developed slowly, episodically and possibly 

diachronously over a long period of time (the calibrated radiocarbon ages allow ~9.5 

to 8.3 ka). The thickest entisol, dated to 8.3-8.4 ka marks the culmination of 

pedogenesis within error of the 8.2 ka climatic event. We interpret this pedogenesis as 

a non-random,  allocyclic response, driven by climatic events recorded in the 

stalagmite and other climatic proxies. 

4. For the 8.2 ka event, temporary development of ‘flashier’ summer rainfall regime 

causing fan-channel incision is a plausible mechanism for allocyclic control on 

palaeosol development. Our attribution of the causes of incision remains speculative 

in the absence of better exposures; however, our approach outlines how radiocarbon 

chronology for alluvial fan palaeosols can be used for centennial-timeframe 

interpretation of alluvial fan response to climatic drivers. 
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Figure captions 

 

Fig. 1. Main panel shows location of the Schinos Bajada, Limnon Cave and Lake Stymphalia 

in the North Peloponnese and Corinth isthmus area of Greece. Insets show wider national and 

regional context where A – Athens; P – Patras; TP - Tenaghi Phillipon. 
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Fig. 2. Axial slab of twin stalagmite KTR-2 showing growth axes (blue dashed lines). All 

samples were taken from the left stalagmite and U/Th sample positions (red circles are 

accompanied by the dates. StalAge excluded sample KTR-2 6 from the age model (see text). 

Green dashed line indicates the base of Holocene calcite at 127 mm. Inset shows a cave plan 

of the first 600 m of the cave with stalagmite sample positions. All cave water samples were 

collected between these positions. 

Fig. 3. Panoramic view and interpretive sketch over Schinos Bay looking south from 50 m 

above sea level into the footwall scarps and bajada (skyline is c. 850 m above m.s.l.) along 

the overlap zone between the Pisia (upper scarp) and Schinos (lower scarp) active normal 

faults (for general location see Fig. 1).  The large sea-cliffed (‘toecut’) coalesced alluvial fan 

is Fan ‘F’ (left side) and ‘G’ (right side) of Leeder et al. (2002), fed by currently inactive 

catchments that drain Mesozoic limestone and serpentinite hinterlands. 

Fig. 4. U-Th age-depth model derived by StalAge for the Holocene section of the KTR-2 

(data in Table 2) excluding KTR2-6 (see text). Upper (blue) and lower (red) lines represent 2 

s.d. errors. There is only one likely minor hiatus (at 96 mm), indicating largely continuous 

extension. 

Fig. 5. Thin section photomicrographs of KTR-2 fabrics with 500 μm scale bar. a) typical 

columnar open (Co) calcite, b) columnar microcrystalline (Cm) calcite; c) horizontal growth 

of Co calcite from left flank at 31 mm (~7.8 ka); d) abrupt transition (arrow) between Cm and 

Co calcites defined by a detritus-rich layer at 96 mm (~9.4 ka). 

Fig. 6. Axial low resolution δ
18

O (panel a, red) and δ
13

C (panel b, blue) data plotted on the 

StalAge timescale (Fig. 4). 

Fig. 7. Axial high resolution δ
18

O (panel a, red) and δ
13

C (panel b, blue) micro-milled data 

plotted on the StalAge timescale between 8.6 and 7.9 ka. 

Fig. 8.  Variation in high-resolution δ
18

O (red) and Mg/Ca (green; upper panel) and Mg/Sr 

(grey; lower panel) showing some similarity in profile shape. The age model is constrained 

by three U/Th ages shown as black dots with error bars above the plot. Note that the trace 

element axes are inverted to facilitate direct comparison to the negative upward δ
18

O scale.  

Fig. 9. Palaeosols in the modern seacliff, with arrows showing position of radiocarbon 

samples.   a) Upper part of a 30 cm thick light red entisol (~9.5-9.7 ka) sharply overlain by a 
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silty layer (~7.8-7.9 ka). The overlying 60 cm of open framework streamflow gravels are 

topped by a thin, discontinuous entisol overlain by another silty layer. b) Showing lateral 

continuity and sharp upper surface of the 30 cm thick entisol, also erosional gutters cutting 

through the upper silt layer and discontinuous entisol. 

Fig. 10. Stratigraphic logs for Fan F (location on Fig. 3) showing stream flow gravel units, 

silty layers, erosion surfaces and palaeosol horizons with calibrated radiocarbon date ranges 

(Table 3). Time marker for 8.2 ka shows temporal correlation. Between ~9.5 ka and 8.0 ka, 

palaeosol (orange shade) development was ongoing, possibly intensifying from NW to SE 

with time. Palaeosols are probably compound with numerous non-deposition time breaks. 

The streamflow gravel lobe above the 5.0 ka palaeosol in the sea cliff section is probably 

thickening to the SE. Apparent dip on the 5.0 ka palaeosol ~9º E but its exact relationship 

with the post 5.0 ka lobe in the quarry section is not exposed. 

Fig. 11.  a) Panorama of the c. 200 m lateral extent of prominent light red entisol in roadside 

quarry to the SE of the cliffed lateral margin to Fan F (Fig. 3). b) Close-up of the main entisol 

with the shallow-scoured base to the angular fan gravels that contain light-grey fine silt-with-

granules units 10 cm or so above the underlying entisol. The entisol gave an 8.3 to 8.4 ka age, 

while the base of the light grey gravel unit above the entisol gave an age of 4.9 to 5.3 ka. The 

junction between entisol and gravel represents a depositional hiatus of some 3000 years. 

Fig. 12. Low resolution KTR-2 stable isotope data (δ
13

C blue, δ
18

O red) related to regional 

and global palaeoclimate events. Horizontal green bar indicates duration of S1 in the Aegean. 

Vertical yellow bars help correlate events, bar width representing minimum error envelope of 

± 60 years (from U-series dates).  Onset of a warm and wet (climate optimum) conditions in 

KTR-2 ~10.3 ka (vertical yellow bar), marked by rapidly declining δ
13

C, coincident with a 

cold phase (%cold water cyanobacterium S. elongatus; Marino et al. 2009; light blue record) 

in otherwise warming SST trend in Aegean. Wetter conditions in Lake Stymphalia (Heymann 

et al., 2013; purple dataset) also start at this time Between 8.8-8.2 ka δ
13

C indicates a period 

of dryness. Both KTR-2 isotopes are relatively high between 8.1 and 8.2 ka (see Figs 7a and 

13 for high resolution data), coincident with peak abundance (cool) of S. elongatus (Marino 

et al. 2009) and within error of the 8.2 ka cold event in NGRIP (grey record) (Andersen et al. 

2004) and Lake Maliq (green record, Bordon et al. 2009). Warmer and wetter conditions in 

KTR-2 re-established after 8.2 ka. 
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Fig. 13. High-resolution stable isotope data (micro-milled samples) for the period around 8.2 

ka in context with global and regional observations. Dryness indicators in KTR-2 (mainly in 

δ
13

C blue but also in δ
18

O in red) combine between 8.2 and 8.1 ka indicated by the vertical 

yellow bar. The bar width is a minimum error envelope (from U-series dates) of ± 60 years. 

This dry period is within error of the latter part of the NGRIP 8.2 ka cold event (dataset from 

Andersen et al. 2004). Regional dryness at this time is indicated by rapid declines in Tenaghi 

Philippon total tree and shrub pollen percentage from 8.4 ka (blue dataset; Peyron et al., 

2011) as are the proportion of evergreen oaks (orange dataset). Cooling NE Aegean (Marino 

et al. 2009; green dataset) winter SSTs between 8.2 and 8.0 ka are indicated by higher 

percentages of S. elongatus a cold water cyanobacterium (Rohling et al. 2002). The KTR-2 

dry phase also corresponds broadly to the timing of S1 disruption in the coastal Aegean Sea 

(purple bar; Kottholf et al. 2008b). 

Table 1. Stable isotope composition of active calcites in Limnon Cave forming within 150 m 

of  KTR-2. The temperatures are calculated from the calcite δ
18

O values using the 

equilibrium equation of Tremaine et al. (2011) and, for comparison, that of Kim and O’Neil 

(1997). A mean cave water δ
18

O of  -7.5‰ VSMOW was used for all temperature 

calculations (see text). Values in bold calculated from Tremaine et al. (2011) overlap with 

measured winter cave temperatures. Walkway deposit value is probably disequilibrium (see 

Supplementary information) and is excluded from means. 

Table 2. U-series data for stalagmite KTR2. Sample weights ~150 mg. Note age inversion in 

samples KTR2-5 and KTR2-6 (shaded), the latter was omitted from the age model (see text). 

All errors are 2σ. Isotope ratios in brackets denote activity ratios and were calculated using 

the decay constants of Cheng et al. (2013). Numbers in parenthesis are ratio errors for the last 

reported digits. Ages BP refer to 2016, the date of analysis. Ages were corrected assuming a 

contaminant of bulk earth composition with a Th/U weight ratio = 3.8 (Taylor and 

McLennan, 1995), assumed error of 50% and 
238

U,
 234

U and 
230

Th in secular equilibrium. 

Table 3. AMS 
14

C dates of palaeosol and associated fine-grained matrix sediments from 

Schinos Fan F. All dates by Beta Analytic Inc. calibrated using IntCal13. Age for sample 

MRL109914-5 originally published in Leeder et al. (2002 
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Table 1 

 

δ
18

O (‰
 

VPDB) 

δ
13

C (‰ 

VPDB) 

T ºC 

(Kim & 

O’Neil 1997) 

T ºC 

(Tremaine et 

al., 2011) 

Active straw stalactite -6.3 -8.7 9.4        13.1 

Top of active stalagmite KTR-1 -6.2 -8.5 8.9        12.6 

Active stalactite drape -6.2 -7.9 8.9 12.6 

Calcite deposit on metal walkway -6.8 -11.6 11.6 15.7 

Mean -6.2 -8.3   
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Table 2 
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Table 3. 

 Sample No Lab. No  Conventional 
14

C age (1

(radiocarbon 

years) 

IntCal13 

2calibration 

(cal. years BP) 

Schinos fan F, roadside quarry 

Light-grey fine silt unit 

10 cm above overlying 

palaeosol (sample 

MRL109914-5). 

MRL090911-4 Beta-309118 4460±30 4970-5280 

Upper 10 cm of prominent 

30 cm thick light red 

palaeosol, 1.5 m above base 

of quarry floor. 

MRL109914-5 Beta-150165 7620±40 8360-8440 

Schinos fan F sea cliff section 

Impersistent light reddish 

brown palaeosol, 5.7 m 

above palaeosol sample 

JEA140916-5. 

JEA140916-6 Beta-448200 4440±30 4890-5275 

Light-grey fine silt unit, 

10 cm above palaeosol 

sample JEA140916-5. 

JEA140916-4 Beta-448198 7030±30 7795-7935  

Prominent light reddish 

brown palaeosol horizon, 

20 cm thick, 5.05 m above 

modern sea-level 

JEA140916-5 Beta-448199 8660±30 9545-9680 

Light brown palaeosol 

horizon, 20 cm thick, 2.0 m 

above modern sea-level 

JEA140916-3 Beta-448197 8350±40 9280-9470 
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Highlights 

 

Novel coupling of early Holocene stalagmite palaeoclimate record with timing of palaeosol 

development on nearby alluvial fan 

 

New record of 8.2 ka palaeoclimate event in Greece 

 

Alluvial fan palaeosol radiocarbon age aligns with documented climatic aridity ~8.2 ka 

 

Palaeosol development was a non-random, allocyclic response, driven by climatic events.  

 

Alluvial fan palaeosol formation ~8.2 ka may have been an allocyclic response to 

precipitation regime change. 
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