177 research outputs found

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+→J/ψ K+B^+ \to J/\psi \, K^+ and B0→J/ψ K∗0B^0 \to J/\psi \, K^{*0} using 3.0 fb−13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7 TeV7\mathrm{\,TeV} and 8 TeV8\mathrm{\,TeV}. Its tagging power on these samples of B→J/ψ XB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm

    Identification of beauty and charm quark jets at LHCb

    Get PDF
    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select bb- and cc-quark jets is measured using data recorded by LHCb from proton-proton collisions at s=7\sqrt{s}=7 TeV in 2011 and at s=8\sqrt{s}=8 TeV in 2012. The efficiency for identifying a b(c)b(c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT>20p_{\rm T} > 20 GeV and pseudorapidity 2.2<η<4.22.2 < \eta < 4.2. The dependence of the performance on the pTp_{\rm T} and η\eta of the jet is also measured

    Measurement of CP observables in B± → D(⁎)K± and B± → D(⁎)π± decays

    Get PDF
    Measurements of CP observables in B ± →D (⁎) K ± and B ± →D (⁎) π ± decays are presented, where D (⁎) indicates a neutral D or D ⁎ meson that is an admixture of D (⁎)0 and DÂŻ (⁎)0 states. Decays of the D ⁎ meson to the Dπ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± π ∓ , K + K − and π + π − final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb −1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± →D ⁎ K ± and B ± →D ⁎ π ± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± →DK ± and B ± →Dπ ± decays is an update of previous LHCb measurements. The B ± →DK ± results are the most precise to date

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1, are analysed to search for the charmless B0 → ρ0ρ0 decay. More than 600 B0 → (π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0 → ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0 → ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL = 0.745+0.048 −0.058(stat) ± 0.034(syst). The B0 → ρ0ρ0 branching fraction, using the B0 → φK∗(892)0 decay as reference, is also reported as B(B0 → ρ0ρ0) = (0.94 ± 0.17(stat) ± 0.09(syst) ± 0.06(BF)) × 10−6

    Measurement of the CP-violating phase ÎČ in B0 → J/ψπ+π− decays and limits on penguin effects

    Get PDF
    Time-dependent CP violation is measured in the (—) B 0 → J/ψπ+π− channel for each π+π− resonant final state using data collected with an integrated luminosity of 3.0 fb−1 in pp collisions using the LHCb detector. The final state with the largest rate, J/ψρ0(770), is used to measure the CP-violating angle 2ÎČeff to be (41.7 ± 9.6+2.8 −6.3)◩. This result can be used to limit the size of penguin amplitude contributions to CP violation measurements in, for example, (—) B 0 s → J/ψφ decays. Assuming approximate SU(3) flavour symmetry and neglecting higher order diagrams, the shift in the CP-violating phase φs is limited to be within the interval [−1.05◩,+1.18◩] at 95% confidence level. Changes to the limit due to SU(3) symmetry breaking effects are also discussed

    LHCb detector performance

    Get PDF
    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region

    Search for the doubly heavy baryon Ξbc+\it{\Xi}_{bc}^{+} decaying to J/ψΞc+J/\it{\psi} \it{\Xi}_{c}^{+}

    Get PDF
    A first search for the Ξbc+→J/ψΞc+\it{\Xi}_{bc}^{+}\to J/\it{\psi}\it{\Xi}_{c}^{+} decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−19\,\mathrm{fb}^{-1} recorded at centre-of-mass energies of 7, 8, and 13 TeV13\mathrm{\,Te\kern -0.1em V}. Two peaking structures are seen with a local (global) significance of 4.3 (2.8)4.3\,(2.8) and 4.1 (2.4)4.1\,(2.4) standard deviations at masses of 6571 MeV ⁣/c26571\,\mathrm{Me\kern -0.1em V\!/}c^2 and 6694 MeV ⁣/c26694\,\mathrm{Me\kern -0.1em V\!/}c^2, respectively. Upper limits are set on the Ξbc+\it{\Xi}_{bc}^{+} baryon production cross-section times the branching fraction relative to that of the Bc+→J/ψDs+B_{c}^{+}\to J/\it{\psi} D_{s}^{+} decay at centre-of-mass energies of 8 and 13 TeV13\mathrm{\,Te\kern -0.1em V}, in the Ξbc+\it{\Xi}_{bc}^{+} and in the Bc+B_{c}^{+} rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20 GeV ⁣/c20\,\mathrm{Ge\kern -0.1em V\!/}c, respectively. Upper limits are presented as a function of the Ξbc+\it{\Xi}_{bc}^{+} mass and lifetime.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-005.html (LHCb public pages

    Search for CP violation in D-0 -&gt; pi(-)pi(+)pi(0) decays with the energy test

    Get PDF
    A search for time-integrated CP violation in the Cabibbo-suppressed decay D0→π−π+π0D^0\to\pi^-\pi^+\pi^0 is performed using for the first time an unbinned model-independent technique known as the energy test. Using proton-proton collision data, corresponding to an integrated luminosity of 2.0 fb−1^{-1} collected by the LHCb detector at a centre-of-mass energy of s\sqrt{s} = 8 TeV, the world's best sensitivity to CP violation in this decay is obtained. The data are found to be consistent with the hypothesis of CP symmetry with a p-value of (2.6 +/- 0.5)%

    Measurement of CPCP asymmetries in D±→ηâ€Čπ±D^{\pm}\rightarrow \eta^{\prime} \pi^{\pm} and Ds±→ηâ€Čπ±D_s^{\pm}\rightarrow \eta^{\prime} \pi^{\pm} decays

    Get PDF
    See paper for full list of authors - All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-041.html - Submitted to Phys. Lett. BInternational audienceA search for CP violation in D±→ηâ€Čπ± and D±s→ηâ€Čπ± decays is performed using proton-proton collision data, corresponding to an integrated luminosity of 3 fb−1, recorded by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The measured CP-violating charge asymmetries are ACP(D±→ηâ€Čπ±)=(−0.61±0.72±0.55±0.12)% and ACP(D±s→ηâ€Čπ±)=(−0.82±0.36±0.24±0.27)%, where the first uncertainties are statistical, the second systematic, and the third are the uncertainties on the ACP(D±→K0Sπ±) and ACP(D±s→ϕπ±) measurements used for calibration. The results represent the most precise measurements of these asymmetries to date

    Observation of ηc(2S)→ppˉ\eta_{c}(2S) \to p \bar p and search for X(3872)→ppˉX(3872) \to p \bar p decays

    Get PDF
    The first observation of the decay ηc(2S)→ppˉ\eta_{c}(2S) \to p \bar p is reported using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb−13.0\rm \, fb^{-1} recorded by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The ηc(2S)\eta_{c}(2S) resonance is produced in the decay B+→[ccˉ]K+B^{+} \to [c\bar c] K^{+}. The product of branching fractions normalised to that for the J/ψJ/\psi intermediate state, Rηc(2S){\cal R}_{\eta_{c}(2S)}, is measured to be \begin{align*} {\cal R}_{\eta_{c}(2S)}\equiv\frac{{\mathcal B}(B^{+} \to \eta_{c}(2S) K^{+}) \times {\mathcal B}(\eta_{c}(2S) \to p \bar p)}{{\mathcal B}(B^{+} \to J/\psi K^{+}) \times {\mathcal B}(J/\psi\to p \bar p)} =~& (1.58 \pm 0.33 \pm 0.09)\times 10^{-2}, \end{align*} where the first uncertainty is statistical and the second systematic. No signals for the decays B+→X(3872)(→ppˉ)K+B^{+} \to X(3872) (\to p \bar p) K^{+} and B+→ψ(3770)(→ppˉ)K+B^{+} \to \psi(3770) (\to p \bar p) K^{+} are seen, and the 95\% confidence level upper limits on their relative branching ratios are % found to be RX(3872)<0.25×10−2{\cal R}_{X(3872)}<0.25\times10^{-2} and Rψ(3770))<0.10{\cal R}_{\psi(3770))}<0.10. In addition, the mass differences between the ηc(1S)\eta_{c}(1S) and the J/ψJ/\psi states, between the ηc(2S)\eta_{c}(2S) and the ψ(2S)\psi(2S) states, and the natural width of the ηc(1S)\eta_{c}(1S) are measured as \begin{align*} M_{J/\psi} - M_{\eta_{c}(1S)} =~& 110.2 \pm 0.5 \pm 0.9 \rm \, MeV, M_{\psi(2S)} -M_{\eta_{c}(2S)} =~ & 52.5 \pm 1.7 \pm 0.6 \rm \, MeV, \Gamma_{\eta_{c}(1S)} =~& 34.0 \pm 1.9 \pm 1.3 \rm \, MeV. \end{align*}Comment: 16 pages, 2 figures All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-016.htm
    • 

    corecore