660 research outputs found
Transiting Exoplanets with JWST
The era of exoplanet characterization is upon us. For a subset of exoplanets
-- the transiting planets -- physical properties can be measured, including
mass, radius, and atmosphere characteristics. Indeed, measuring the atmospheres
of a further subset of transiting planets, the hot Jupiters, is now routine
with the Spitzer Space Telescope. The James Webb Space Telescope (JWST) will
continue Spitzer's legacy with its large mirror size and precise thermal
stability. JWST is poised for the significant achievement of identifying
habitable planets around bright M through G stars--rocky planets lacking
extensive gas envelopes, with water vapor and signs of chemical disequilibrium
in their atmospheres. Favorable transiting planet systems, are, however,
anticipated to be rare and their atmosphere observations will require tens to
hundreds of hours of JWST time per planet. We review what is known about the
physical characteristics of transiting planets, summarize lessons learned from
Spitzer high-contrast exoplanet measurements, and give several examples of
potential JWST observations.Comment: 22 pages, 11 figures. In press in "Astrophysics in the Next Decade:
JWST and Concurrent Facilities, Astrophysics & Space Science Library,
Thronson, H. A., Tielens, A., Stiavelli, M., eds., Springer: Dordrecht
(2008)." The original publication will be available at
http://www.springerlink.co
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Search for Anomalous Couplings in the Higgs Sector at LEP
Anomalous couplings of the Higgs boson are searched for through the processes
e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70
GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity
collected with the L3 detector at LEP at centre-of-mass energies
sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H
-> Z\gamma and H -> WW^(*) are considered and no evidence is found for
anomalous Higgs production or decay. Limits on the anomalous couplings d, db,
Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H
-> gamma gamma and H -> Z gamma decay rates
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Neutral-Current Four-Fermion Production in e+e- Interactions at LEP
Neutral-current four-fermion production, e+e- -> ffff is studied in 0.7/fb of
data collected with the L3 detector at LEP at centre-of-mass energies
root(s)=183-209GeV. Four final states are considered: qqvv, qqll, llll and
llvv, where l denotes either an electron or a muon. Their cross sections are
measured and found to agree with the Standard Model predictions. In addition,
the e+e- -> Zgamma* -> ffff process is studied and its total cross section at
the average centre-of-mass energy 196.6GeV is found to be 0.29 +/- 0.05 +/-
0.03 pb, where the first uncertainty is statistical and the second systematic,
in agreement with the Standard Model prediction of 0.22 pb. Finally, the mass
spectra of the qqll final states are analysed to search for the possible
production of a new neutral heavy particle, for which no evidence is found
Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP
Exclusive rho+rho- production in two-photon collisions between a quasi-real
photon, gamma, and a mid-virtuality photon, gamma*, is studied with data
collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total
integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* ->
rho+ rho- process is determined as a function of the photon virtuality, Q^2,
and the two-photon centre-of-mass energy, W_gg, in the kinematic region:
0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together
with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a
study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2
< 30 GeV^2
Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays
Bose-Einstein correlations of both neutral and like-sign charged pion pairs
are measured in a sample of 2 million hadronic Z decays collected with the L3
detector at LEP. The analysis is performed in the four-momentum difference
range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be
smaller than that of charged pions. This result is in qualitative agreement
with the string fragmentation model
Z Boson Pair-Production at LEP
Events stemming from the pair-production of Z bosons in e^+e^- collisions are
studied using 217.4 pb^-1 of data collected with the L3 detector at
centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events
with b quarks is also investigated.
Combining these events with those collected at lower centre-of-mass energies,
the Standard Model predictions for the production mechanism are verified. In
addition, limits are set on anomalous couplings of neutral gauge bosons and on
effects of extra space dimensions
Measurement of the Running of the Electromagnetic Coupling at Large Momentum-Transfer at LEP
The evolution of the electromagnetic coupling, alpha, in the
momentum-transfer range 1800GeV^2 < -Q^2 < 21600GeV^2 is studied with about
40000 Bhabha-scattering events collected with the L3 detector at LEP at
centre-of-mass energies 189-209GeV. The running of alpha is parametrised as:
alpha(Q^2) = alpha_0/(1-C Delta alpha(Q^2)), where alpha_0=\alpha(Q^2=0) is the
fine-structure constant and C=1 corresponds to the evolution expected in QED. A
fit to the differential cross section of the e+e- ->e+e- process for scattering
angles in the range |cos theta|<0.9 excludes the hypothesis of a constant value
of alpha, C=0, and validates the QED prediction with the result: C = 1.05 +/-
0.07 +/- 0.14, where the first uncertainty is statistical and the second
systematic
- âŠ