512 research outputs found

    Series Expansions for Excited States of Quantum Lattice Models

    Full text link
    We show that by means of connected-graph expansions one can effectively generate exact high-order series expansions which are informative of low-lying excited states for quantum many-body systems defined on a lattice. In particular, the Fourier series coefficients of elementary excitation spectra are directly obtained. The numerical calculations involved are straightforward extensions of those which have already been used to calculate series expansions for ground-state correlations and T=0T=0 susceptibilities in a wide variety of models. As a test, we have reproduced the known elementary excitation spectrum of the transverse-field Ising chain in its disordered phase.Comment: 9 pages, no figures, Revtex 3.0 The revised version corrects the incorrect (and unnecessary) statement in the original that H and H^eff are related by a unitary transformation; in fact they are related by via a similarity transformation. This has no implications for the calculations of spectra, but is important for matrix element

    38th annual New England Intercollegiate Geological Excursion: Mount Washington, New Hampshire, October 5 and 6, 1946

    Get PDF
    Trip A: Percy Quadrangle: Trip B: Gorham and Mt. Washington quadrangles; Trip C: Northern part of Mt. Washington quadrangle; Trip D: Lower northern slopes of Mt. Adams and Mt. Madison; Trip E: Emergency trip

    Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models

    Get PDF
    Measurements of atmospheric O2/N2 ratios and CO2 concentrations can be combined into a tracer known as atmospheric potential oxygen (APO ≈ O2/N2 + CO2) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. (1998), we present a set of APO observations for the years 1996-2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. (2001), we compare these observations with predictions of APO generated from ocean O2 and CO2 flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere. Copyright 2006 by the American Geophysical Union

    New England Intercollegiate Geological Excursion: Littleton, New Hampshire, October 10, 11 and 12, 1936

    Get PDF
    Trip A: Littleton quadrangle and northwest corner of the Moosilauke quadrangle; Trip B: Moosilauke quadrangle; Trip C: Mt. Hale, northeast corner of the Franconia quadrangl

    A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission

    Get PDF
    Three uncertainty assessments associated with the global total of carbon dioxide emitted from fossil fuel use and cement production are presented. Each assessment has its own strengths and weaknesses and none give a full uncertainty assessment of the emission estimates. This approach grew out of the lack of independent measurements at the spatial and temporal scales of interest. Issues of dependent and independent data are considered as well as the temporal and spatial relationships of the data. The result is a multifaceted examination of the uncertainty associated with fossil fuel carbon dioxide emission estimates. The three assessments collectively give a range that spans from 1.0 to 13% (2 σ). Greatly simplifying the assessments give a global fossil fuel carbon dioxide uncertainty value of 8.4% (2 σ). In the largest context presented, the determination of fossil fuel emission uncertainty is important for a better understanding of the global carbon cycle and its implications for the physical, economic and political world

    The Robo-AO software: fully autonomous operation of a laser guide star adaptive optics and science system

    Get PDF
    Robo-AO is the first astronomical laser guide star adaptive optics (AO) system designed to operate completely independent of human supervision. A single computer commands the AO system, the laser guide star, visible and near-infrared science cameras (which double as tip-tip sensors), the telescope, and other instrument functions. Autonomous startup and shutdown sequences as well as concatenated visible observations were demonstrated in late 2011. The fully robotic software is currently operating during a month long demonstration of Robo-AO at the Palomar Observatory 60-inch telescope

    The global carbon budget 1959-2011

    Get PDF
    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future

    A synthesis of carbon dioxide emissions from fossil-fuel combustion

    Get PDF
    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e., maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10 % uncertainty (95 % confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. This manuscript concludes that carbon dioxide emissions from fossil-fuel combustion continue to increase with time and that while much is known about the overall characteristics of these emissions, much is still to be learned about the detailed characteristics of these emissions

    Uncertainty in an emissions constrained world: Case Austria

    Get PDF
    The current task under the United Nations Framework Convention on Climate Change [UN FCCC] is to agree on a climate treaty that comes into force in 2012, the year in which commitments under the Kyoto Protocol will cease. Leaders of the world's major industrialized countries have formally agreed in the wake of the 2009 UN climate change conference in Copenhagen that the average global temperature should not be permitted to increase by more than 2 degrees Celsius from its preindustrial level. Compliance with this temperature target can be expressed equivalently in terms of limiting cumulative greenhouse [GHG] emissions, for example, up to 2050, while considering the risk of exceeding this target (Meinshausen et al., 2009). The emission reductions required are substantial: 50.80% below the 1990 level at the global scale, with even greater reductions for industrialized countries (Jonas et al., 2010a). Although the issue of translating an approved global emissions constraint to the sub-global level and allocating global emission shares to countries is still unsettled, a crucial question arising and still to be answered is: how should we deal with the uncertainty associated with the accounting of emissions for compliance purposes? The accounting of emissions, when bottom-up inventory estimates are compared with top-down model-derived constraints, could force us to admit considerable uncertainty due to still existing accounting gaps. Minimizing the risk of exceeding an agreed global average temperature target may demand significant undershooting of the most uncertain emission estimates to ensure that global overall emissions do not exceed the agreed target
    • …
    corecore