208 research outputs found

    Morphology and kinematics of Lynds 1642

    Full text link
    The high latitude translucent molecular cloud L1642 has been mapped in the J=1-0 and J=2-1 transitions of 12CO, 13CO and C18O using the SEST radio telescope. We have analysed the morphology and velocity structure of the cloud using the Positive Matrix Factorization (PMF) method. The results show that L1642 is composed of a main structure at radial velocity 0.2 km/s while the higher velocity components at ~0.5 and 1.0 km/s form an incomplete ring around it, suggesting an expanding shell structure. Fainter emission extends to the north with a still higher velocity of up to 1.6 km/s. Such a velocity structure suggests an elongated morphology in the line of sight direction. The physical properties of the cloud have been investigated assuming LTE conditions, but non-LTE radiative transfer models are also constructed for the 13CO observations. We confirm that L1642 follows an r^-1 density distribution in its outer parts while the distribution is considerably flatter in the core. The cloud is close to virial equilibrium. In an Appendix the PMF results are compared with the view obtained through the analysis of channel maps and by the use of Principal Component Analysis (PCA). Both PMF and PCA present the observations as a linear combination of basic spectral shapes that are extracted from the data. Comparison of the methods shows that the PMF method in particular is able to produce a presentation of the complex velocity that is both compact and easily interpreted.Comment: Accepted to A&

    GATA6 modulates the ductular reaction to bile duct ligation

    Get PDF
    Background GATA6, a transcription factor expressed in cholangiocytes, has been implicated in the response to liver injury. In biliary atresia, a disease characterized by extrahepatic bile duct obstruction, liver expression of GATA6 increases with pathological bile duct expansion and decreases after successful Kasai portoenterostomy. The aim of this study was to garner genetic evidence that GATA6 is involved in ductular formation/expansion. Methods The murine Gata6 gene was conditionally deleted using Alb-cre, a transgene expressed in hepatoblasts (the precursors of hepatocytes and cholangiocytes) and mature hepatocytes. Bile duct ligation (BDL) was used to model biliary obstruction. Results Alb-Cre;Gata6(flox/flox) mice were viable and fertile. Cre-mediated recombination of Gata6 in hepatocytes had little impact on cellular structure or function. GATA6 immunoreactivity was retained in a majority of biliary epithelial cells in adult Alb-Cre;Gata6(flox/flox) mice, implying that surviving cholangiocytes were derived from hepatoblasts that had escaped biallelic Cre-mediated recombination. Although GATA6 immunoreactivity was preserved in cholangiocytes, Alb-cre;Gata6(flox/flox) mice had a demonstrable biliary phenotype. A neutrophil-rich infiltrate surrounded newly formed bile ducts in neonatal Alb-Cre;Gata6(flox/flox) mice. Foci of fibrosis/necrosis, presumed to reflect patchy defects in bile duct formation, were observed in the livers of 37% of adult Alb-cre;Gata6(flox/flox) mice and 0% of controls (p <0.05). Most notably, Alb-cre;Gata6(flox/flox) mice had an altered response to BDL manifest as reduced survival, impaired bile ductule proliferation, increased parenchymal necrosis, reduced fibrosis, and enhanced macrophage accumulation in the portal space. Conclusions GATA6 orchestrates intrahepatic biliary remodeling and mitigates liver injury following extrahepatic bile duct obstruction. Graphic abstractPeer reviewe

    Comparison of the efficacy of early versus late viral proteins in vaccination against SIV.

    Get PDF
    The immune response against early regulatory proteins of simian- and human immunodeficiency virus (SIV, HIV) has been associated with a milder course of infection. Here, we directly compared vaccination with Tat/Rev versus Pol/Gag. Challenge infection with SIVmac32H (pJ5) suggested that vaccination with Tat/Rev induced cellular immune responses that enabled cynomolgus macaques to more efficiently control SIV replication than the vaccine-induced immune responses against Pol/Gag. Vaccination with Tat/Rev resulted in reduced plasma SIV loads compared with control (P=0.058) or Pol/Gag-vaccinated (P

    Reynolds stresses from hydrodynamic turbulence with shear and rotation

    Full text link
    To study the Reynolds stresses which describe turbulent momentum transport from turbulence affected by large-scale shear and rotation. Three-dimensional numerical simulations are used to study turbulent transport under the influences of large-scale shear and rotation in homogeneous, isotropically forced turbulence. We study three cases: one with only shear, and two others where in addition to shear, rotation is present. These cases differ by the angle (0 or 90\degr) the rotation vector makes with respect to the z-direction. Two subsets of runs are performed with both values of \theta where either rotation or shear is kept constant. When only shear is present, the off-diagonal stress can be described by turbulent viscosity whereas if the system also rotates, nondiffusive contributions (\Lambda-effect) to the stress can arise. Comparison of the direct simulations are made with analytical results from a simple closure model. We find that the turbulent viscosity is of the order of the first order smoothing result in the parameter regime studied and that for sufficiently large Reynolds numbers the Strouhal number, describing the ratio of correlation to turnover times, is roughly 1.5. This is consistent with the closure model based on the minimal tau-approximation which produces a reasonable fit to the simulation data for similar Strouhal numbers. In the cases where rotation is present, separating the diffusive and nondiffusive components of the stress turns out to be challenging but taking the results at face value, we can obtain nondiffusive contributions of the order of 0.1 times the turbulent viscosity. We also find that the simple closure model is able to reproduce most of the qualitative features of the numerical results provided that the Strouhal number is of the order of unity.Comment: 19 pages, 12 figures, published versio

    From Motion to Emotion : Accelerometer Data Predict Subjective Experience of Music

    Get PDF
    Music is often discussed to be emotional because it reflects expressive movements in audible form. Thus, a valid approach to measure musical emotion could be to assess movement stimulated by music. In two experiments we evaluated the discriminative power of mobile-device generated acceleration data produced by free movement during music listening for the prediction of ratings on the Geneva Emotion Music Scales (GEMS-9). The quality of prediction for different dimensions of GEMS varied between experiments for tenderness (R12(first experiment) = 0.50, R22(second experiment) = 0.39), nostalgia (R12 = 0.42, R22 = 0.30), wonder (R12 = 0.25, R22 = 0.34), sadness (R12 = 0.24, R22 = 0.35), peacefulness (R12 = 0.20, R22 = 0.35) and joy (R12 = 0.19, R22 = 0.33) and transcendence (R12 = 0.14, R22 = 0.00). For others like power (R12 = 0.42, R22 = 0.49) and tension (R12 = 0.28, R22 = 0.27) results could be almost reproduced. Furthermore, we extracted two principle components from GEMS ratings, one representing arousal and the other one valence of the experienced feeling. Both qualities, arousal and valence, could be predicted by acceleration data, indicating, that they provide information on the quantity and quality of experience. On the one hand, these findings show how music-evoked movement patterns relate to music-evoked feelings. On the other hand, they contribute to integrate findings from the field of embodied music cognition into music recommender systems

    The molecular disk surrounding the protostellar binary L1551 IRS5

    Get PDF
    The inner three arcminutes surrounding the Class 0/1 binary protostar L1551 IRS5 have been observed using the J=1→0 transitions of the HCO+, H13CO+, 12CO and 13CO molecular species. Since the line core of HCO+ is self reversed over a substantial part of our map, observations of isotopomers such as H13CO+ are required in order to estimate the mass of the molecular gas in the immediate vicinity of IRS5. Our observations demonstrate the presence of a large ( ~ 7000 AU radius) dense, possibly rotating, molecular disk with a mass of a few M⊙ oriented perpendicular to the major axis of an extended molecular outflow. The disk is surrounded by an envelope with a radius of ~ 10 000 AU that contains two massive (each ~ 1 M⊙) clumps. One of these features appears to be kinematically disconnected from both the disk and the molecular outflow

    The design and function of birds’ nests

    Get PDF
    All birds construct nests in which to lay eggs and/or raise offspring. Traditionally, it was thought that natural selection and the requirement to minimize the risk of predation determined the design of completed nests. However, it is becoming increasingly apparent that sexual selection also influences nest design. This is an important development as while species such as bowerbirds build structures that are extended phenotypic signals whose sole purpose is to attract a mate, nests contain eggs and/or offspring, thereby suggesting a direct tradeoff between the conflicting requirements of natural and sexual selection. Nest design also varies adaptively in order to both minimize the detrimental effects of parasites and to create a suitable microclimate for parents and developing offspring in relation to predictable variation in environmental conditions. Our understanding of the design and function of birds’ nests has increased considerably in recent years, and the evidence suggests that nests have four nonmutually exclusive functions. Consequently, we conclude that the design of birds’ nests is far more sophisticated than previously realized and that nests are multifunctional structures that have important fitness consequences for the builder/s

    Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions

    Get PDF
    Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology
    • 

    corecore