386 research outputs found

    2D Simulations of the Line-Driven Instability in Hot-Star Winds: II. Approximations for the 2D Radiation Force

    Full text link
    We present initial attempts to include the multi-dimensional nature of radiation transport in hydrodynamical simulations of the small-scale structure that arises from the line-driven instability in hot-star winds. Compared to previous 1D or 2D models that assume a purely radial radiation force, we seek additionally to treat the lateral momentum and transport of diffuse line-radiation, initially here within a 2D context. A key incentive is to study the damping effect of the associated diffuse line-drag on the dynamical properties of the flow, focusing particularly on whether this might prevent lateral break-up of shell structures at scales near the lateral Sobolev angle of ca. 1o1^{\rm o}. We first explore nonlinear simulations that cast the lateral diffuse force in the simple, local form of a parallel viscosity. Second, to account for the lateral mixing of radiation associated with the radial driving, we next explore models in which the radial force is azimuthally smoothed over a chosen scale. Third, to account for both the lateral line-drag and the lateral mixing in a more self-consistent way, we explore further a method first proposed by Owocki (1999), which uses a restricted 3-ray approach that combines a radial ray with two oblique rays set to have an impact parameter p<Rp < R_{\ast} within the stellar core. From numerical simulations, we find that, compared to equivalent 1-ray simulations, the high-resolution 3-ray models show systematically a much higher lateral coherence.... (Full abstract in paper)Comment: Accepted by A&A, 12 pages, 7 figures, 3 only shown in version available at http://www.mpa-garching.mpg.de/~luc/2778.ps.g

    Improved distance determination to M51 from supernovae 2011dh and 2005cs

    Get PDF
    The appearance of two recent supernovae, SN 2011dh and 2005cs, both in M51, provides an opportunity to derive an improved distance to their host galaxy by combining the observations of both SNe. We apply the Expanding Photosphere Method to get the distance to M51 by fitting the data of these two SNe simultaneously. In order to correct for the effect of flux dilution, we use correction factors (zeta) appropriate for standard type II-P SNe atmospheres for 2005cs, but find zeta ~ 1 for the type IIb SN 2011dh, which may be due to the reduced H-content of its ejecta. The EPM analysis resulted in D_M51 = 8.4 +/- 0.7 Mpc. Based on this improved distance, we also re-analyze the HST observations of the proposed progenitor of SN 2011dh. We confirm that the object detected on the pre-explosion HST-images is unlikely to be a compact stellar cluster. In addition, its derived radius (~ 277$ R_sun) is too large for being the real (exploded) progenitor of SN 2011dh. The supernova-based distance, D = 8.4 Mpc, is in good agreement with other recent distance estimates to M51.Comment: 6 pages, 5 figures, accepted for publication in A&

    Mass loss from inhomogeneous hot star winds II. Constraints from a combined optical/UV study

    Full text link
    Mass-loss rates currently in use for hot, massive stars have recently been seriously questioned, mainly because of the effects of wind clumping. We investigate the impact of clumping on diagnostic ultraviolet resonance and optical recombination lines. Optically thick clumps, a non-void interclump medium, and a non-monotonic velocity field are all accounted for in a single model. We used 2D and 3D stochastic and radiation-hydrodynamic (RH) wind models, constructed by assembling 1D snapshots in radially independent slices. To compute synthetic spectra, we developed and used detailed radiative transfer codes for both recombination lines (solving the "formal integral") and resonance lines (using a Monte-Carlo approach). In addition, we propose an analytic method to model these lines in clumpy winds, which does not rely on optically thin clumping. Results: Synthetic spectra calculated directly from current RH wind models of the line-driven instability are unable to in parallel reproduce strategic optical and ultraviolet lines for the Galactic O-supergiant LCep. Using our stochastic wind models, we obtain consistent fits essentially by increasing the clumping in the inner wind. A mass-loss rate is derived that is approximately two times lower than predicted by the line-driven wind theory, but much higher than the corresponding rate derived from spectra when assuming optically thin clumps. Our analytic formulation for line formation is used to demonstrate the potential impact of optically thick clumping in weak-winded stars and to confirm recent results that resonance doublets may be used as tracers of wind structure and optically thick clumping. (Abridged)Comment: 14 pages+1 Appendix, 8 figures, 3 tables. Accepted for publication in Astronomy and Astrophysics. One reference updated, minor typo in Appendix correcte

    Type II supernova spectral diversity, II: spectroscopic and photometric correlations

    Get PDF
    We present an analysis of observed trends and correlations between a large range of spectral and photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase. We define a common epoch for all SNe of 50 days post-explosion, where the majority of the sample is likely to be under similar physical conditions. Several correlation matrices are produced to search for interesting trends between more than 30 distinct light-curve and spectral properties that characterize the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly declining light curves, shorter plateau durations, and higher 56Ni masses. Using a larger sample than previous studies, we argue that "Pd" - the plateau duration from the transition of the initial to "plateau" decline rates to the end of the "plateau" - is a better indicator of the hydrogen envelope mass than the traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This argument is supported by the fact that Pd also correlates with s 3, the light-curve decline rate at late times: lower Pd values correlate with larger s 3 decline rates. Large s 3 decline rates are likely related to lower envelope masses, which enables gamma-ray escape. We also find a significant anticorrelation between Pd and s 2 (the plateau decline rate), confirming the long standing hypothesis that faster declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and therefore have shorter Pd values.Fil: Gutiérrez, Claudia P.. Universidad de Chile; Chile. University of Southampton; Reino Unido. European Southern Observatory Santiago; Chile. Millennium Institute Of Astrophysics; ChileFil: Anderson, Joseph P.. European Southern Observatory Santiago; ChileFil: Hamuy, Mario. Millennium Institute Of Astrophysics; Chile. Universidad de Chile; ChileFil: González Gaitan, Santiago. Universidad de Chile; Chile. Universidade de Lisboa; Portugal. Millennium Institute Of Astrophysics; ChileFil: Galbany, Lluis. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Dessart, Luc. Universidad de Chile; ChileFil: Stritzinger, Maximilian D.. University Aarhus; DinamarcaFil: Phillips, Mark M.. Las Campanas Observatory; ChileFil: Morrell, Nidia. Las Campanas Observatory; ChileFil: Folatelli, Gaston. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin

    Emotional Expression in Children's Drawings of God

    Get PDF
    Experimental psychological research on the expressive aspects of children’s drawings has grown considerably in the last 40 years. It has reported consistently that children use the same expressive techniques as artists, despite varying opinions on how expressive drawing develops in childhood (e.g., U-shaped curve or age incremental patterns). The developmental findings have largely derived from drawing tasks that explicitly ask children to draw an emotion or mood (e.g. happy, sad, angry). Nevertheless, the pervasiveness of expression in children’s drawings is such that we might expect children to spontaneously communicate expressively in drawing tasks that do not specifically request mood. “Drawing God” is such an example due to the potential emotive aspects of the subject, both in terms of the “God Figure” and the potential representation of other subject matter in the drawing. With this in mind, this chapter sets forth two sets of analyses of over 500 children’s drawings from Switzerland, obtained from a sample of 6- to 16-year-olds. First, we report findings from a quantitative study based on artist ratings that the intensity (strength) and valence (negative to positive) of the emotional expression in the drawings varies according to gender and religiosity. Age was not a significant predictor of intensity and only weakly predicted valence. Second, we describe narrative themes derived from our own observations of the dataset, in which all themes consistently indicated the same expressive techniques reported in the psychological experimental literature. Furthermore, despite being asked only to “draw God”, the drawings displayed a wide variety of themes which can be presented as a narrative story of the Christian Gospel

    The morphing of decay powered to interaction powered Type II supernova ejecta at nebular times

    Full text link
    Much excitement surrounds the intense mass loss that seems to take place in some massive stars immediately before core collapse. However, occurring too late, it has a negligible impact on the star's evolution or the final yields, which are influenced instead by the longer-term, quasi-steady mass loss taking place during H and He burning. Late-time observations of core-collapse supernovae interacting with the progenitor wind are one means to constrain this secular mass loss. Here, we present radiative transfer calculations for a Type II SN with and without this interaction power, focusing on the phase between 350 and 1000d after explosion. Without interaction power, the ejecta are powered through radioactive decay whose exponential decline produces an ever-fading SN. Instead, with a constant interaction power of 104010^{40} erg s1^{-1} (representative of an SN II ramming into a steady-state 106M10^{-6} M_\odot yr1^{-1} wind), the spectrum morphs from decay powered at 350d, with narrow lines forming in the inner metal-rich ejecta, to interaction powered at 1000d, with broad boxy lines forming in the outer H-rich ejecta. Intermediate times are characterized by a hybrid and complex spectrum made of overlapping narrow and broad lines. While interaction boosts primarily the flux in the ultraviolet, which remains largely unobserved today, a knee in the RR-band light curve or a UU-band boost are clear signatures of interaction at late times. The model predictions compare favorably with a number of Type II supernovae including SN 2004et or SN 2017eaw at 500-1000d after explosion.Comment: submitted to A&

    High spatial resolution monitoring of the activity of BA supergiant winds

    Get PDF
    There are currently two optical interferometry recombiners that can provide spectral resolutions better than 10000, AMBER/VLTI operating in the H-K bands, and VEGA/CHARA, recently commissioned, operating in the visible. These instruments are well suited to study the wind activity of the brightest AB supergiants in our vicinity, in lines such as Hα\alpha or BrGamma. We present here the first observations of this kind, performed on Rigel (B8Ia) and Deneb (A2Ia). Rigel was monitored by AMBER in two campaigns, in 2006-2007 and 2009-2010, and observed in 2009 by VEGA; whereas Deneb was monitored in 2008-2009 by VEGA. The extension of the Halpha and BrGamma line forming regions were accurately measured and compared with CMFGEN models of both stars. Moreover, clear signs of activity were observed in the differential visibility and phases. These pioneer observations are still limited, but show the path for a better understanding of the spatial structure and temporal evolution of localized ejections using optical interferometry.Comment: Proceedings of conf. IAUS272 - Active OB stars - Paris, July 19-23, 201

    Peculiar Type II Supernovae from Blue Supergiants

    Full text link
    The vast majority of Type II supernovae (SNe) are produced by red supergiants (RSGs), but SN 1987A revealed that blue supergiants (BSGs) can produce members of this class as well, albeit with some peculiar properties. This best studied event revolutionized our understanding of SNe, and linking it to the bulk of Type II events is essential. We present here optical photometry and spectroscopy gathered for SN 2000cb, which is clearly not a standard Type II SN and yet is not a SN 1987A analog. The light curve of SN 2000cb is reminiscent of that of SN 1987A in shape, with a slow rise to a late optical peak, but on substantially different time scales. Spectroscopically, SN 2000cb resembles a normal SN II but with ejecta velocities that far exceed those measured for SN 1987A or normal SNe II, above 18000 km/s for H-alpha at early times. The red colours, high velocities, late photometric peak, and our modeling of this object all point toward a scenario involving the high-energy explosion of a small-radius star, most likely a BSG, producing 0.1 solar masses of Ni-56. Adding a similar object to the sample, SN 2005ci, we derive a rate of about 2% of the core-collapse rate for this loosely defined class of BSG explosions.Comment: Accepted to MNRAS on March 14, 201

    Type II supernovae as probes of environment metallicity: observations of host HII regions

    Get PDF
    Spectral modelling of SNII atmospheres indicates a clear dependence of metal line strengths on progenitor metallicity. This motivates further work to evaluate the accuracy with which these SNe can be used as metallicity indicators. To assess this accuracy we present a sample of SNII HII-region spectroscopy, from which environment abundances are derived. These environment abundances are compared to the observed strength of metal lines in SN spectra. Combining our sample with measurements from the literature, we present oxygen abundances of 119 host HII regions, by extracting emission line fluxes and using abundance diagnostics. Then, following Dessart et al., these abundances are compared to equivalent widths of Fe 5018 A at various time and colour epochs. Our distribution of inferred SNII host HII-region abundances has a range of ~0.6 dex. We confirm the dearth of SNeII exploding at metallicities lower than those found (on average) in the Large Magellanic Cloud. The equivalent width of Fe 5018 A at 50 days post explosion shows a statistically significant correlation with host HII-region oxygen abundance. The strength of this correlation increases if one excludes abundance measurements derived far from SN explosion sites. The correlation significance also increases if we only analyse a 'gold' IIP sample, and if a colour epoch is used in place of time. In addition, no evidence is found of correlation between progenitor metallicity and SN light-curve or spectral properties - except for that stated above with respect to Fe 5018 A equivalent width - suggesting progenitor metallicity is not a driving factor in producing the diversity observed in our sample. This study provides observational evidence of the usefulness of SNII as metallicity indicators. We finish with a discussion of the methodology needed to use SN spectra as independent metallicity diagnostics throughout the Universe.Comment: Accepted for publication in Astronomy and Astrophyci
    corecore